Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships

One of the main goals of current systems neuroscience is to understand how neuronal populations integrate sensory information to inform behavior. However, estimating stimulus or behavioral information that is encoded in high-dimensional neuronal populations is challenging. We propose a method based on parametric copulas which allows modeling joint distributions of neuronal and behavioral variables characterized by different statistics and timescales. To account for temporal or spatial changes in dependencies between variables, we model varying copula parameters by means of Gaussian Processes (GP). We validate the resulting Copula-GP framework on synthetic data and on neuronal and behavioral recordings obtained in awake mice. We show that the use of a parametric description of the high-dimensional dependence structure in our method provides better accuracy in mutual information estimation in higher dimensions compared to other non-parametric methods. Moreover, by quantifying the redundancy between neuronal and behavioral variables, our model exposed the location of the reward zone in an unsupervised manner (i.e., without using any explicit cues about the task structure). These results demonstrate that the Copula-GP framework is particularly useful for the analysis of complex multidimensional relationships between neuronal, sensory and behavioral variables.

[1]  Kelsey L. Clark,et al.  Copula Regression Analysis of Simultaneously Recorded Frontal Eye Field and Inferotemporal Spiking Activity during Object-Based Working Memory , 2015, The Journal of Neuroscience.

[2]  Karthik Kashinath,et al.  A fast and objective multidimensional kernel density estimation method: fastKDE , 2016, Comput. Stat. Data Anal..

[3]  P. Embrechts,et al.  Dependence modeling with copulas , 2007 .

[4]  Claudia Czado,et al.  Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .

[5]  A. Pouget,et al.  Correlations and Neuronal Population Information. , 2016, Annual review of neuroscience.

[6]  Fritjof Helmchen,et al.  Two-Photon Functional Imaging of Neuronal Activity , 2009 .

[7]  James Hensman,et al.  Scalable Variational Gaussian Process Classification , 2014, AISTATS.

[8]  Zoubin Ghahramani,et al.  Gaussian Process Vine Copulas for Multivariate Dependence , 2013, ICML.

[9]  Babak Shahbaba,et al.  A Semiparametric Bayesian Model for Detecting Synchrony Among Multiple Neurons , 2013, Neural Computation.

[10]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[11]  Klaus Obermayer,et al.  Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation , 2009, PLoS Comput. Biol..

[12]  Shreya Saxena,et al.  Towards the neural population doctrine , 2019, Current Opinion in Neurobiology.

[13]  W. Singer,et al.  Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large-Scale Networks , 2012, Neuron.

[14]  Stefano Ermon,et al.  Understanding the Limitations of Variational Mutual Information Estimators , 2020, ICLR.

[15]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[16]  Pramod Viswanath,et al.  Demystifying fixed k-nearest neighbor information estimators , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[17]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[18]  Nicholas A. Steinmetz,et al.  Spontaneous behaviors drive multidimensional, brainwide activity , 2019, Science.

[19]  R. Kass,et al.  Multiple neural spike train data analysis: state-of-the-art and future challenges , 2004, Nature Neuroscience.

[20]  Emery N. Brown,et al.  State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data , 2012, PLoS Comput. Biol..

[21]  Mónica F. Bugallo,et al.  A survey of Monte Carlo methods for parameter estimation , 2020, EURASIP J. Adv. Signal Process..

[22]  Christian Genest,et al.  Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..

[23]  Nathalie L Rochefort,et al.  Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex , 2020, Current Biology.

[24]  Sumio Watanabe,et al.  A widely applicable Bayesian information criterion , 2012, J. Mach. Learn. Res..

[25]  Danielle S. Bassett,et al.  From Maps to Multi-dimensional Network Mechanisms of Mental Disorders , 2018, Neuron.

[26]  Rick L. Jenison,et al.  The Shape of Neural Dependence , 2004, Neural Computation.

[27]  James Hensman,et al.  MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.

[28]  Stefano Panzeri,et al.  Information-theoretic methods for studying population codes , 2010, Neural Networks.

[29]  Stefano Panzeri,et al.  Mixed vine copulas as joint models of spike counts and local field potentials , 2016, NIPS.

[30]  S. Hofer,et al.  Contextual signals in visual cortex , 2018, Current Opinion in Neurobiology.

[31]  Renato Vicente,et al.  An information-theoretic approach to statistical dependence: Copula information , 2009, ArXiv.

[32]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Frank D. Wood,et al.  Characterizing neural dependencies with copula models , 2008, NIPS.

[34]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[35]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[36]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[37]  Andrew Gordon Wilson,et al.  GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration , 2018, NeurIPS.

[38]  Daniel Hernández-Lobato,et al.  Gaussian Process Conditional Copulas with Applications to Financial Time Series , 2013, NIPS.

[39]  Daniel Hernández-Lobato,et al.  Scalable Gaussian Process Classification via Expectation Propagation , 2015, AISTATS.

[40]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[41]  Danielle S Bassett,et al.  Understanding the Emergence of Neuropsychiatric Disorders With Network Neuroscience. , 2018, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[42]  Nathalie L. Rochefort,et al.  The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex , 2018, Cell reports.

[43]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[44]  Sonja Grün,et al.  CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains , 2009, Journal of Computational Neuroscience.

[45]  Christine Grienberger,et al.  Dendritic function in vivo , 2015, Trends in Neurosciences.

[46]  R. Nelsen An Introduction to Copulas , 1998 .

[47]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[48]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[49]  Haim Sompolinsky,et al.  Nonlinear Population Codes , 2004, Neural Computation.

[50]  Kjersti Aas,et al.  On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..

[51]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[52]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[53]  Brent Doiron,et al.  The mechanics of state-dependent neural correlations , 2016, Nature Neuroscience.

[54]  Byron Boots,et al.  Variational Inference for Gaussian Process Models with Linear Complexity , 2017, NIPS.

[55]  Nathalie L Rochefort,et al.  Action and learning shape the activity of neuronal circuits in the visual cortex , 2018, Current Opinion in Neurobiology.

[56]  Paul Embrechts,et al.  The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis , 2010, ASTIN Bulletin.