Two models for transforming auditory signals from head-centered to eye-centered coordinates

Two models for transforming auditory signals from head-centered to eye-centered coordinates are presented. The vector subtraction model subtracts a rate-coded eye position signal from a topographically weighted auditory target position signal to produce a rate-code of target location with respect to the eye. The rate-code is converted into a place-code through a graded synaptic weighting scheme and inhibition. The dendrite model performs a mapping of head-centered auditory space onto the dendrites of eye-centered units. Individual dendrites serve as logical comparators of target location and eye position. Both models produce a topographic map of auditory space in eye-centered coordinates like that found in the primate superior colliculus. Either type can be converted into a model for transforming visual signals from retinal to head-centered coordinates.

[1]  A. Fuchs,et al.  Activity of brain stem neurons during eye movements of alert monkeys. , 1972, Journal of neurophysiology.

[2]  Peter H. Schiller,et al.  Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey , 1979, Brain Research.

[3]  E I Knudsen,et al.  Visual instruction of the neural map of auditory space in the developing optic tectum. , 1991, Science.

[4]  A. J. van Opstal,et al.  Role of monkey superior colliculus in saccade averaging , 2004, Experimental Brain Research.

[5]  D. A. Suzuki,et al.  Processing of eye movement signals in the flocculus of the monkey. , 1979, The Journal of physiology.

[6]  D. Sparks,et al.  Sensorimotor integration in the primate superior colliculus. I. Motor convergence. , 1987, Journal of neurophysiology.

[7]  D. Sparks,et al.  Cerebellotectal pathways in the macaque: Implications for collicular generation of saccades , 1990, Neuroscience.

[8]  Emilio Bizzi,et al.  Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys , 1968, Experimental Brain Research.

[9]  E. Keller Participation of medial pontine reticular formation in eye movement generation in monkey. , 1974, Journal of neurophysiology.

[10]  R. Andersen,et al.  Microstimulation of a Neural-Network Model for Visually Guided Saccades , 1989, Journal of Cognitive Neuroscience.

[11]  Gordon M. Shepherd,et al.  Introduction to Synaptic Circuits , 2004 .

[12]  B E Stein,et al.  Effects of cooling somatosensory cortex on response properties of tactile cells in the superior colliculus. , 1986, Journal of neurophysiology.

[13]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[14]  R. M. Beckstead,et al.  Distribution of corticotectal axons from the caudal part of the anterior ectosylvian sulcus in the cat , 1989, Neuroscience Letters.

[15]  H. R. Clemo,et al.  Organization of a fourth somatosensory area of cortex in cat. , 1983, Journal of neurophysiology.

[16]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[17]  Russell L. Martin,et al.  Neurons in the inferior colliculus of cats sensitive to sound-source elevation , 1990, Hearing Research.

[18]  D. P. Phillips,et al.  Spatial receptive fields in the cat inferior colliculus , 1983, Hearing Research.

[19]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[20]  D. Sparks,et al.  The deep layers of the superior colliculus. , 1989, Reviews of oculomotor research.

[21]  R. Andersen,et al.  The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. , 1988, Canadian journal of physiology and pharmacology.

[22]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[23]  B E Stein,et al.  Nonequivalent visual, auditory, and somatic corticotectal influences in cat. , 1978, Journal of neurophysiology.

[24]  C. Olson,et al.  Ectosylvian visual area of the cat: Location, retinotopic organization, and connections , 1987, The Journal of comparative neurology.

[25]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[26]  W. Becker,et al.  An analysis of the saccadic system by means of double step stimuli , 1979, Vision Research.

[27]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[28]  J. Hyvärinen,et al.  Functional properties of neurons in the temporo-parietal association cortex of awake monkey , 2004, Experimental Brain Research.

[29]  H. R. Clemo,et al.  Auditory cortical projection from the anterior ectosylvian sulcus (Field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. , 1989, The Journal of comparative neurology.

[30]  Leif H. Finkel,et al.  NEXUS: A simulation environment for large-scale neural systems , 1992, Simul..

[31]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[32]  D. Irvine,et al.  The anterior ectosylvian sulcal auditory field in the cat: I. An electrophysiological study of its relationship to surrounding auditory cortical fields , 1990, The Journal of comparative neurology.

[33]  J. C. Middlebrooks,et al.  A neural code for auditory space in the cat's superior colliculus , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[35]  C K Peck,et al.  Sensory integration in the deep layers of superior colliculus. , 1993, Progress in brain research.

[36]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[37]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[38]  Barbara G. Wickelgren,et al.  Superior Colliculus: Some Receptive Field Properties of Bimodally Responsive Cells , 1971, Science.

[39]  R. M. Siegel,et al.  Neurons of area 7 activated by both visual stimuli and oculomotor behavior , 2004, Experimental Brain Research.

[40]  E I Knudsen,et al.  Vision guides the adjustment of auditory localization in young barn owls. , 1985, Science.

[41]  B E Stein,et al.  Small lateral suprasylvian cortex lesions produce visual neglect and decreased visual activity in the superior colliculus , 1988, The Journal of comparative neurology.

[42]  E I Knudsen,et al.  Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls; acoustic basis and behavioral correlates , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  D. Irvine,et al.  Auditory response properties of neurons in the anterior ectosylvian sulcus of the cat , 1986, Brain Research.

[44]  R. Batra,et al.  Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. , 1987, Journal of neurophysiology.