Compositional Termination Analysis of Symbolic Forward Analysis

Existing model checking tools for infinite state systems, such as UPPAAL, HYTECH and KRONOS, use symbolic forward analysis, a possibly nonterminating procedure. We give termination criteria that allow us to reason compositionally about systems defined with asynchronous parallel composition; we can prove the termination of symbolic forward analysis for a composed system from the syntactic conditions satisfied by the component systems.Our results apply to nonlinear hybrid systems; in particular to rectangular hybrid systems, timed automata and o-minimal systems. In the case of integer-valued systems we give negative results: forward analysis is not well-suited for this class of infinite-state systems.

[1]  Thomas A. Henzinger,et al.  Hybrid Automata with Finite Bisimulatioins , 1995, ICALP.

[2]  Stavros Tripakis,et al.  Model Checking of Real-Time Reachability Properties Using Abstractions , 1998, TACAS.

[3]  Richard Gerber,et al.  Symbolic Model Checking of Infinite State Systems Using Presburger Arithmetic , 1997, CAV.

[4]  Laurent Fribourg,et al.  A Decompositional Approach for Computing Least Fixed-Points of Datalog Programs with Z-Counters , 2004, Constraints.

[5]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[6]  Nancy G. Leveson,et al.  Analyzing Safety and Fault Tolerance Using Time Petri Nets , 1985, TAPSOFT, Vol.2.

[7]  Supratik Mukhopadhyay,et al.  Beyond Region Graphs: Symbolic Forward Analysis of Timed Automata , 1999, FSTTCS.

[8]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[9]  Kedar S. Namjoshi,et al.  Ameliorating the state explosion problem , 1998 .

[10]  Giorgio Delzanno,et al.  Model Checking in CLP , 1999, TACAS.

[11]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[12]  Antoni Mazurkiewicz,et al.  CONCUR '97: Concurrency Theory , 1997, Lecture Notes in Computer Science.

[13]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[14]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[15]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[16]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[17]  Thomas A. Henzinger,et al.  Modularity for Timed and Hybrid Systems , 1997, CONCUR.

[18]  Parosh Aziz Abdulla,et al.  General decidability theorems for infinite-state systems , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[19]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[20]  Wang Yi,et al.  Compositional and symbolic model-checking of real-time systems , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[21]  Wang Yi,et al.  UPPAAL in 1995 , 1996, TACAS.

[22]  Thomas A. Henzinger,et al.  A User Guide to HyTech , 1995, TACAS.

[23]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[24]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[25]  Howard Wong-Toi,et al.  Symbolic approximations for verifying real-time systems , 1995 .

[26]  Leonid Libkin Variable Independence, Quantifier Elimination, and Constraint Representations , 2000, ICALP.

[27]  William Pugh,et al.  A practical algorithm for exact array dependence analysis , 1992, CACM.

[28]  William Pugh,et al.  The Omega test: A fast and practical integer programming algorithm for dependence analysis , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[29]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[30]  Laurent Fribourg,et al.  Reachability Analysis of (Timed) Petri Nets Using Real Arithmetic , 1999, CONCUR.

[31]  Robert K. Brayton,et al.  Alternating RQ Timed Automata , 1993, CAV.

[32]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.