MAXENT3D_PID: An Estimator for the Maximum-Entropy Trivariate Partial Information Decomposition

Partial information decomposition (PID) separates the contributions of sources about a target into unique, redundant, and synergistic components of information. In essence, PID answers the question of “who knows what” of a system of random variables and hence has applications to a wide spectrum of fields ranging from social to biological sciences. The paper presents MaxEnt3D_Pid, an algorithm that computes the PID of three sources, based on a recently-proposed maximum entropy measure, using convex optimization (cone programming). We describe the algorithm and its associated software utilization and report the results of various experiments assessing its accuracy. Moreover, the paper shows that a hierarchy of bivariate and trivariate PID allows obtaining the finer quantities of the trivariate partial information measure.

[1]  G. Tononi,et al.  Rethinking segregation and integration: contributions of whole-brain modelling , 2015, Nature Reviews Neuroscience.

[2]  Viola Priesemann,et al.  Quantifying Information Modification in Developing Neural Networks via Partial Information Decomposition , 2017, Entropy.

[3]  Guido Montúfar,et al.  The Variational Deficiency Bottleneck , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[4]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[5]  Ralph Linsker,et al.  Local Synaptic Learning Rules Suffice to Maximize Mutual Information in a Linear Network , 1992, Neural Computation.

[6]  Rob Brekelmans,et al.  Disentangled representations via synergy minimization , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Raul Vicente,et al.  Transfer Entropy in Neuroscience , 2014 .

[8]  Dirk Oliver Theis,et al.  Bivariate Partial Information Decomposition: The Optimization Perspective , 2017, Entropy.

[9]  James P. Crutchfield,et al.  dit: a Python package for discrete information theory , 2018, J. Open Source Softw..

[10]  Christoph Salge,et al.  A Bivariate Measure of Redundant Information , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  A. Ledberg,et al.  Framework to study dynamic dependencies in networks of interacting processes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Adam B. Barrett,et al.  An exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Johannes Rauh,et al.  Secret Sharing and Shared Information , 2017, Entropy.

[14]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[15]  Christof Koch,et al.  Quantifying synergistic mutual information , 2012, ArXiv.

[16]  Jie Sun,et al.  Identifying the Coupling Structure in Complex Systems through the Optimal Causation Entropy Principle , 2014, Entropy.

[17]  Seth Frey,et al.  Synergistic Information Processing Encrypts Strategic Reasoning in Poker , 2018, Cogn. Sci..

[18]  Tian Zheng,et al.  Inference of Regulatory Gene Interactions from Expression Data Using Three‐Way Mutual Information , 2009, Annals of the New York Academy of Sciences.

[19]  Nihat Ay,et al.  Robustness, canalyzing functions and systems design , 2012, Theory in Biosciences.

[20]  Dirk Oliver Theis,et al.  Analyzing Information Distribution in Complex Systems , 2017, Entropy.

[21]  Abdullah Makkeh Applications of optimization in some complex systems , 2018 .

[22]  Luca Faes,et al.  Synergetic and redundant information flow detected by unnormalized Granger causality: application to resting state fMRI. , 2015, IEEE transactions on bio-medical engineering.

[23]  Eckehard Olbrich,et al.  On extractable shared information , 2017, Entropy.

[24]  D. Anastassiou Computational analysis of the synergy among multiple interacting genes , 2007, Molecular systems biology.

[25]  Daniel Chicharro,et al.  The Identity of Information: How Deterministic Dependencies Constrain Information Synergy and Redundancy , 2017, Entropy.

[26]  Nihat Ay,et al.  Hierarchical Quantification of Synergy in Channels , 2016, Front. Robot. AI.

[27]  Ralf Der,et al.  Guided self-organization: perception–action loops of embodied systems , 2011, Theory in Biosciences.

[28]  Joseph T. Lizier,et al.  Towards a synergy-based approach to measuring information modification , 2013, 2013 IEEE Symposium on Artificial Life (ALife).

[29]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[30]  Luca Faes,et al.  Estimating the decomposition of predictive information in multivariate systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  James P. Crutchfield,et al.  Unique information via dependency constraints , 2017, Journal of Physics A: Mathematical and Theoretical.

[32]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[33]  Joseph T. Lizier,et al.  Pointwise Partial Information DecompositionUsing the Specificity and Ambiguity Lattices , 2018, Entropy.

[34]  I. Couzin,et al.  Inferring the structure and dynamics of interactions in schooling fish , 2011, Proceedings of the National Academy of Sciences.

[35]  Joseph T. Lizier,et al.  Directed Information Measures in Neuroscience , 2014 .

[36]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[37]  Gordon Pipa,et al.  Transfer entropy—a model-free measure of effective connectivity for the neurosciences , 2010, Journal of Computational Neuroscience.

[38]  James P. Crutchfield,et al.  A Perspective on Unique Information: Directionality, Intuitions, and Secret Key Agreement , 2018, ArXiv.

[39]  Luca Faes,et al.  An Information-Theoretic Framework to Map the Spatiotemporal Dynamics of the Scalp Electroencephalogram , 2016, IEEE Transactions on Biomedical Engineering.

[40]  Guy Theraulaz,et al.  Informative and misinformative interactions in a school of fish , 2017, Swarm Intelligence.

[41]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[42]  Michael J. Berry,et al.  Network information and connected correlations. , 2003, Physical review letters.

[43]  Daniel Chicharro,et al.  Synergy and Redundancy in Dual Decompositions of Mutual Information Gain and Information Loss , 2016, Entropy.

[44]  Robin A. A. Ince Measuring multivariate redundant information with pointwise common change in surprisal , 2016, Entropy.

[45]  Karl J. Friston,et al.  Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.

[46]  Sami El Boustani,et al.  Prediction of spatiotemporal patterns of neural activity from pairwise correlations. , 2009, Physical review letters.

[47]  Eckehard Olbrich,et al.  Information Decomposition and Synergy , 2015, Entropy.

[48]  Murray Shanahan,et al.  The Partial Information Decomposition of Generative Neural Network Models , 2017, Entropy.

[49]  Daniel Chicharro,et al.  Invariant Components of Synergy, Redundancy, and Unique Information among Three Variables , 2017, Entropy.

[50]  Michael J. Berry,et al.  Predictive information in a sensory population , 2013, Proceedings of the National Academy of Sciences.

[51]  Paul L. Williams,et al.  Information dynamics: Its theory and application to embodied cognitive systems , 2011 .

[52]  Jim Kay,et al.  Exact Partial Information Decompositions for Gaussian Systems Based on Dependency Constraints , 2018, Entropy.

[53]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[54]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[55]  Prantik Chatterjee,et al.  Construction of synergy networks from gene expression data related to disease. , 2016, Gene.

[56]  Eckehard Olbrich,et al.  Quantifying unique information , 2013, Entropy.

[57]  P. Latham,et al.  Synergy, Redundancy, and Independence in Population Codes, Revisited , 2005, The Journal of Neuroscience.

[58]  Daniel Chicharro,et al.  Quantifying multivariate redundancy with maximum entropy decompositions of mutual information , 2017, 1708.03845.

[59]  Jim Kay,et al.  Partial information decomposition as a unified approach to the specification of neural goal functions , 2015, Brain and Cognition.

[60]  Raul Vicente,et al.  Efficient Estimation of Information Transfer , 2014 .

[61]  E. Davidson,et al.  The evolution of hierarchical gene regulatory networks , 2009, Nature Reviews Genetics.

[62]  Bryan C. Daniels,et al.  Quantifying collectivity , 2016, Current Opinion in Neurobiology.

[63]  Benjamin Flecker,et al.  Synergy, redundancy, and multivariate information measures: an experimentalist’s perspective , 2014, Journal of Computational Neuroscience.

[64]  Guido Montúfar,et al.  Computing the Unique Information , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[65]  Stephen P. Boyd,et al.  ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).

[66]  Dirk Oliver Theis,et al.  BROJA-2PID: A Robust Estimator for Bivariate Partial Information Decomposition , 2018, Entropy.

[67]  Eckehard Olbrich,et al.  Shared Information -- New Insights and Problems in Decomposing Information in Complex Systems , 2012, ArXiv.

[68]  Keyan Zahedi,et al.  Morphological Computation: Synergy of Body and Brain , 2017, Entropy.

[69]  Shun-ichi Amari,et al.  Information geometry on hierarchy of probability distributions , 2001, IEEE Trans. Inf. Theory.

[70]  K. Hlavácková-Schindler,et al.  Causality detection based on information-theoretic approaches in time series analysis , 2007 .

[71]  Stefano Panzeri,et al.  Quantifying how much sensory information in a neural code is relevant for behavior , 2017, NIPS.

[72]  Joseph T. Lizier,et al.  JIDT: An Information-Theoretic Toolkit for Studying the Dynamics of Complex Systems , 2014, Front. Robot. AI.

[73]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[74]  Ralf Der,et al.  Information-driven self-organization: the dynamical system approach to autonomous robot behavior , 2011, Theory in Biosciences.

[75]  Viola Priesemann,et al.  Bits from Brains for Biologically Inspired Computing , 2014, Front. Robot. AI.

[76]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[77]  James P. Crutchfield,et al.  Multivariate Dependence Beyond Shannon Information , 2016, Entropy.

[78]  Jessica C. Flack,et al.  Multiple time-scales and the developmental dynamics of social systems , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[79]  Luca Faes,et al.  Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes , 2017, Entropy.

[80]  Virgil Griffith,et al.  Synergy, Redundancy and Common Information , 2015, ArXiv.

[81]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[82]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.