Symbolic dynamics approach to parameter estimation without initial value

Abstract Symbolic dynamics, which partitions the infinite number of finite length trajectories into a finite number of trajectory sets, allows a simplified and “coarse-grained” description of the dynamics of a system with a limited number of symbols. In this Letter, we will show that control parameters affect dynamical characters of symbolic sequences. To be more specific, we will analyze how control parameters affect statistical property of Skewed Tent map symbolic sequences. Besides, we will also analyze how control parameters affect ergodic property of both Logistic map and Tent map symbolic sequences. Both theoretical and experimental results show that the above mentioned effects of control parameters discourage the use of chaotic symbolic sequences in cryptography. Furthermore, we will propose an improved scheme utilizing asymptotic deterministic randomness to avoid the undesirable effects.

[1]  Ling Cong,et al.  A general efficient method for chaotic signal estimation , 1999 .

[2]  Ljupco Kocarev,et al.  Discrete Chaos-I: Theory , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  C. Letellier Symbolic sequence analysis using approximated partition , 2008 .

[4]  Kai Wang,et al.  On the security of 3D Cat map based symmetric image encryption scheme , 2005 .

[5]  C. Chui,et al.  A symmetric image encryption scheme based on 3D chaotic cat maps , 2004 .

[6]  G. Álvarez,et al.  Cryptanalysis of an ergodic chaotic cipher , 2003 .

[7]  Wenjiang Pei,et al.  Pseudo-random number generator based on asymptotic deterministic randomness , 2007, 0710.1908.

[8]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[9]  David Arroyo,et al.  Application of Gray code to the cryptanalysis of chaotic cryptosystems , 2007 .

[10]  E. Alvarez,et al.  New approach to chaotic encryption , 1999 .

[11]  Xiaogang Wu,et al.  Parameter estimation only from the symbolic sequences generated by chaos system , 2004 .

[12]  Y. Lai,et al.  What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series , 2001 .

[13]  José María Amigó,et al.  Estimation of the control parameter from symbolic sequences: unimodal maps with variable critical point. , 2009, Chaos.

[14]  X. Mou,et al.  Improving security of a chaotic encryption approach , 2001, Physics Letters A.

[15]  Wenjiang Pei,et al.  The asymptotic deterministic randomness , 2007 .

[16]  Kai Wang,et al.  Symbolic Vector Dynamics Approach to Initial Condition and Control Parameters Estimation of Coupled Map Lattices , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Adrian Skrobek,et al.  Approximation of a chaotic orbit as a cryptanalytical method on Baptista's cipher , 2008 .

[18]  M. Baptista Cryptography with chaos , 1998 .