Spectroscopic studies of synthetic and natural ringwoodite, γ-(Mg, Fe)2SiO4

[1]  M. Dyar,et al.  Optical absorption study of natural garnets of almandine-skiagite composition showing intervalence Fe2+ + Fe3+ → Fe3+ + Fe2+ charge-transfer transition , 2007 .

[2]  H. Keppler,et al.  Optical and near infrared spectra of ringwoodite to 21.5 GPa: Implications for radiative heat transport in the mantle , 2005 .

[3]  D. Frost,et al.  Local relaxation around [6]Cr3+ in synthetic pyrope–knorringite garnets, [8]Mg3[6](Al1−X CrX3+)2[4]Si3O12, from electronic absorption spectra , 2004 .

[4]  P. Aken,et al.  Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity , 2004 .

[5]  H. Spetzler,et al.  Sound velocities and elastic constants of iron-bearing hydrous ringwoodite , 2004 .

[6]  D. Frost,et al.  Structural systematics of hydrous ringwoodite and water in earth’s interior , 2003 .

[7]  K. Langer,et al.  Single-crystal high-pressure electronic absorption spectroscopic study of natural orthopyroxenes , 2003 .

[8]  S. Sinogeikin,et al.  Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity , 2003 .

[9]  G. Rossman,et al.  High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline , 2002 .

[10]  R. Wirth,et al.  Mie scattering and charge transfer phenomena as causes of the UV edge in the absorption spectra of natural and synthetic almandine garnets , 2002 .

[11]  G. Rossman,et al.  Optical spectroscopic study of tuhualite and a re-examination of the beryl, cordierite, and osumilite spectra , 2001 .

[12]  G. Rossman,et al.  Spectroscopic standards for four- and fivefold-coordinated Fe2+ in oxygen-based minerals , 2001 .

[13]  K. Langer,et al.  Electronic absorption spectra of Fe2+ ions in oxygen-based rock-forming minerals at temperatures between 297 and 600 K , 2001 .

[14]  L. Stixrude,et al.  Normal and inverse ringwoodite at high pressures , 1999 .

[15]  K. Langer,et al.  TEMPERATURE AND PRESSURE DEPENDENCE OF INTERVALENCE CHARGE TRANSFER BANDS IN SPECTRA OF SOME FE- AND FE, TI-BEARING OXYGEN-BASED MINERALS , 1998 .

[16]  R. Jeanloz,et al.  Elasticity of natural majorite and ringwoodite from the catherwood meteorite , 1997 .

[17]  K. Langer,et al.  Pressure- and temperature-effects on exchange-coupled-pair bands in electronic spectra of some oxygen-based iron-bearing minerals , 1996 .

[18]  R. Hazen,et al.  Crystal chemistry of ferromagnesian silicate spinels: Evidence for Mg-Si disorder , 1993 .

[19]  F. Seifert,et al.  Mössbauer spectroscopy of mantle transition zone phases and determination of minimum Fe3+ content , 1993 .

[20]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[21]  P. Fu,et al.  X-Ray Powder Structural Analysis of the Spinel Polymorph of Fe2SiO4 , 1990, Powder Diffraction.

[22]  P. McMillan,et al.  Raman spectra of beta -Mg 2 SiO 4 (modified spinel) and gamma -Mg 2 SiO 4 (spinel) , 1987 .

[23]  G. Rossman,et al.  Fe2+-Fe3+ interactions in tourmaline , 1987 .

[24]  A. Navrotsky,et al.  Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution , 2004 .

[25]  Gordon Smith Evidence for absorption by exchange-coupled Fe2+-Fe3+ pairs in the near infra-red spectra of minerals , 1978 .

[26]  Gordon Smith A reassessment of the role of iron in the 5,000–30,000 cm−1 region of the electronic absorption spectra of tourmaline , 1978 .

[27]  R. Burns,et al.  The effect of crystal field stabilization on the olivine→spinel transition in the system Mg2SiO4 - Fe2SiO4 , 1978 .

[28]  G. Smith Low-temperature optical studies of metal-metal charge-transfer transitions in various minerals , 1977 .

[29]  W. F. Sherman High Pressure Spectroscopy , 1977 .

[30]  R. Strens The Physics and Chemistry of Minerals and Rocks , 1976 .

[31]  J. Tossell,et al.  Pressure-induced Reduction of a Ferric Amphibole , 1972, Nature.

[32]  W. H. Baur Computer-simulated crystal structures of observed and hypothetical Mg2Sio4 polymorphs of low and high density , 1972 .

[33]  Y. Syono,et al.  Crystal field effect on the olivine-spinel transformation , 1971 .

[34]  R. Rowland Mineralogical applications of crystal field theory, 2nd edn, Roger G. Burns (Ed.). Cambridge University Press, London (1969), 224, 80 s , 1970 .

[35]  R. Binns,et al.  Ringwoodite, Natural (Mg,Fe)2SiO4 Spinel in the Tenham Meteorite , 1969, Nature.

[36]  M. Koch-Müller,et al.  Coupled boron and hydrogen incorporation in coesite , 2009 .

[37]  P. Decarli,et al.  Shock Effects in Meteorites , 2006 .

[38]  G. J. Taylor Asteroid Heating: A Shocking View , 2004 .

[39]  G. Amthauer,et al.  Crystal chemistry of iron in natural and in synthetic braunites Mn2 +(Mn3+,Fe3+ )6O8/SiO4 , 1988 .

[40]  G. Rossman,et al.  Identifying characteristics of charge transfer transitions in minerals , 1987 .

[41]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .