Lyman continuum escape fraction of faint galaxies at z 3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC

ASI-INAF [I/009/10/0]; European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme(s) [185.A-0791]

[1]  B. Garilli,et al.  The Lyman continuum escape fraction of galaxies at z = 3.3 in the VUDS-LBC/COSMOS field , 2015, 1509.01101.

[2]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[3]  David Schiminovich,et al.  EXTREME FEEDBACK AND THE EPOCH OF REIONIZATION: CLUES IN THE LOCAL UNIVERSE , 2011, 1101.4219.

[4]  K. Nagamine,et al.  Escape fraction of ionizing photons from high-redshift galaxies in cosmological SPH simulations , 2010, 1002.3346.

[5]  C. Frenk,et al.  The brighter galaxies reionized the Universe , 2015, 1512.04537.

[6]  C. Steidel,et al.  THE CONNECTION BETWEEN REDDENING, GAS COVERING FRACTION, AND THE ESCAPE OF IONIZING RADIATION AT HIGH REDSHIFT , 2016, 1606.03452.

[7]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[8]  M. Franx,et al.  THE LYMAN-CONTINUUM PHOTON PRODUCTION EFFICIENCY ξION OF z ∼ 4–5 GALAXIES FROM IRAC-BASED Hα MEASUREMENTS: IMPLICATIONS FOR THE ESCAPE FRACTION AND COSMIC REIONIZATION , 2015, 1511.08504.

[9]  J. Dunlop,et al.  The galaxy UV luminosity function at z≃ 2–4; new results on faint-end slope and the evolution of luminosity density , 2015, 1507.05629.

[10]  B. Robertson,et al.  A HARD IONIZING SPECTRUM IN z = 3–4 Lyα EMITTERS WITH INTENSE EMISSION: ANALOGS OF GALAXIES IN THE REIONIZATION ERA? , 2016, 1608.08222.

[11]  E. Stanway,et al.  Stellar population effects on the inferred photon density at reionization , 2015, 1511.03268.

[12]  H. Rottgering,et al.  Identification of the brightest Lyα emitters at z = 6.6 : Implications for the evolution of the luminosity function in the reionization era , 2015, 1502.07355.

[13]  A. Loeb,et al.  Escape fraction of the ionizing radiation from starburst galaxies at high redshifts , 2012, 1209.2123.

[14]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[15]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[16]  J. Devriendt,et al.  Feedback-regulated star formation and escape of LyC photons from mini-haloes during reionization , 2016, 1608.04762.

[17]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[18]  L. Pentericci,et al.  Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.

[19]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[20]  C. Conselice,et al.  A SPECTROSCOPIC SEARCH FOR LEAKING LYMAN CONTINUUM AT z ∼ 0.7 , 2010, 1008.0004.

[21]  S. Finkelstein,et al.  Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.

[22]  J. Sommer-Larsen,et al.  IONIZING RADIATION FROM z = 4–10 GALAXIES , 2009, 0903.2045.

[23]  J. Bolton,et al.  New Measurements of the Ionizing Ultraviolet Background over 2 < z < 5 and Implications for Hydrogen Reionization , 2013, 1307.2259.

[24]  A. Zitrin,et al.  ABSORPTION-LINE SPECTROSCOPY OF GRAVITATIONALLY LENSED GALAXIES: FURTHER CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS AT HIGH REDSHIFT , 2016, 1606.05309.

[25]  G. Zamorani,et al.  An extreme [O III] emitter at z = 3.2: a low metallicity Lyman continuum source , 2015, 1507.06648.

[26]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[27]  D. Schaerer,et al.  Lyman-α spectral properties of five newly discovered Lyman continuum emitters , 2016, 1609.03477.

[28]  Czech Republic,et al.  Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies , 2016, 1605.05160.

[29]  S. Djorgovski,et al.  THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 4: IMPLICATIONS FOR IONIZATION OF THE INTERGALACTIC MEDIUM AND COSMIC DOWNSIZING , 2009, 0912.2799.

[30]  George D. Becker,et al.  The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.

[31]  C. Leitherer,et al.  OBSERVATIONS OF STARBURST GALAXIES WITH FAR-ULTRAVIOLET SPECTROGRAPHIC EXPLORER: GALACTIC FEEDBACK IN THE LOCAL UNIVERSE , 2009 .

[32]  A. Fontana,et al.  ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.

[33]  Deep R-band counts of z ≈ 3 Lyman-break galaxy candidates with the LBT , 2014, 1403.0727.

[34]  Astrophysics,et al.  THE EVOLUTION OF THE FAINT END OF THE UV LUMINOSITY FUNCTION DURING THE PEAK EPOCH OF STAR FORMATION , 2016, 1606.00469.

[35]  C. Scarlata,et al.  Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS , 2015, 1505.05149.

[36]  D. Sobral,et al.  The Lyα luminosity function at z = 5.7–6.6 and the steep drop of the faint end: implications for reionization , 2016, 1606.07435.

[37]  E. Puchwein,et al.  Large scale opacity fluctuations in the Lyman alpha forest: evidence for QSOs dominating the ionising UV background at z ~ 5.5-6 ? , 2016, 1606.08231.

[38]  J. Hjorth,et al.  Gravitationally lensed galaxies at 2 < z < 3.5: direct abundance measurements of Ly α emitters , 2012, 1209.0775.

[39]  A. Fontana,et al.  THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < z < 4.5 , 2010, 1009.1140.

[40]  Stefano Cristiani,et al.  The spectral slope and escape fraction of bright quasars at z ∼ 3.8: the contribution to the cosmic UV background , 2016, 1603.09351.

[41]  Hsiao-Wen Chen,et al.  Escape of Ionizing Radiation from High-Redshift Galaxies , 2007, 0707.0879.

[42]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[43]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[44]  K. Finlator,et al.  Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations , 2015, 1510.04280.

[45]  A. Grazian,et al.  DISCOVERY OF A QUADRUPLE LENS IN CANDELS WITH A RECORD LENS REDSHIFT z = 1.53 , 2013, 1309.2826.

[46]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION , 2011, 1107.1376.

[47]  A. Faisst REVISITING THE LYMAN CONTINUUM ESCAPE CRISIS: PREDICTIONS FOR z > 6 FROM LOCAL GALAXIES , 2016, 1605.06507.

[48]  E. Stanway,et al.  Spectral population synthesis including massive binaries , 2009, 0908.1386.

[49]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). III. A CENSUS OF Lyα EMISSION AT z ≳ 7 ?> FROM HST SPECTROSCOPY , 2015, 1511.04205.

[50]  R. Bouwens,et al.  REIONIZATION AFTER PLANCK: THE DERIVED GROWTH OF THE COSMIC IONIZING EMISSIVITY NOW MATCHES THE GROWTH OF THE GALAXY UV LUMINOSITY DENSITY , 2015, 1503.08228.

[51]  C. Papovich,et al.  Spitzer Observations of z ~ 3 Lyman Break Galaxies: Stellar Masses and Mid-Infrared Properties , 2006, astro-ph/0605355.

[52]  M. Meneghetti,et al.  Constraints on the Lyman continuum escape fraction for faint star-forming galaxies , 2016, 1612.06401.

[53]  B. Garilli,et al.  New constraints on the average escape fraction of Lyman continuum radiation in z~4 galaxies from the VIMOS Ultra Deep Survey (VUDS) , 2016, 1611.05882.

[54]  Max Pettini,et al.  The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.

[55]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[56]  Heidelberg,et al.  The ionizing photon production efficiency of compact z~0.3 Lyman continuum leakers and comparison with high redshift galaxies , 2016, 1606.00053.

[57]  The University of Tokyo,et al.  An updated analytic model for attenuation by the intergalactic medium , 2014 .

[58]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[59]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[60]  J. Walsh,et al.  EMISSION-LINE GALAXIES FROM THE HUBBLE SPACE TELESCOPE PROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. II. THE COMPLETE SAMPLE , 2012, 1208.5535.

[61]  P. Capak,et al.  ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES AT Z ≃ 3.3 FROM NEAR-IR SPECTROSCOPY , 2016, 1602.02779.

[62]  Northwestern,et al.  The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: A view from the FIRE cosmological simulations , 2015, 1503.07880.

[63]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[64]  A. Fontana,et al.  The lack of intense Lyman ~ alpha in ultradeep spectra of z = 7 candidates in GOODS-S : imprint of reionization ? , 2017 .

[65]  R. Srianand,et al.  The redshift evolution of escape fraction of hydrogen ionizing photons from galaxies , 2015, 1510.04700.

[66]  M. Giavalisco,et al.  NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.

[67]  B. Garilli,et al.  Correction: Corrigendum: Analogues of primeval galaxies two billion years after the Big Bang , 2017, Nature Astronomy.

[68]  D. Maccagni,et al.  The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys , 2011, 1109.1005.

[69]  A. Fontana,et al.  A Low Upper Limit to the Lyman Continuum Emission of Two Galaxies at z ≃ 3 , 2002, astro-ph/0202293.

[70]  Timothy M. Heckman,et al.  A local clue to the reionization of the universe , 2014, Science.

[71]  A. Fontana,et al.  CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip , 2017, 1703.05768.

[72]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[73]  P. Madau,et al.  Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six , 2014, 1407.4850.

[74]  B. O’Shea,et al.  GALAXY PROPERTIES AND UV ESCAPE FRACTIONS DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS , 2016, 1604.07842.

[75]  A. Fontana,et al.  FIRST OBSERVATIONAL SUPPORT FOR OVERLAPPING REIONIZED BUBBLES GENERATED BY A GALAXY OVERDENSITY , 2016, 1601.03442.

[76]  C. Frenk,et al.  Winds of change : reionization by starburst galaxies. , 2016, 1606.08688.

[77]  J. V'ilchez,et al.  ON THE OXYGEN AND NITROGEN CHEMICAL ABUNDANCES AND THE EVOLUTION OF THE “GREEN PEA” GALAXIES , 2010, 1004.4910.

[78]  C. Conselice,et al.  A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.

[79]  A. Strom,et al.  THE REST-FRAME OPTICAL SPECTROSCOPIC PROPERTIES OF LYα-EMITTERS AT z ∼ 2.5: THE PHYSICAL ORIGINS OF STRONG LYα EMISSION , 2016, 1608.07280.

[80]  G. Zamorani,et al.  HUBBLE IMAGING OF THE IONIZING RADIATION FROM A STAR-FORMING GALAXY AT Z = 3.2 WITH , 2016, 1602.00688.

[81]  J. Prochaska,et al.  A New Constraint on the Escape Fraction in Distant Galaxies Using γ-Ray Burst Afterglow Spectroscopy , 2007, 0707.2594.

[82]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[83]  N. Gnedin COSMIC REIONIZATION ON COMPUTERS: THE FAINT END OF THE GALAXY LUMINOSITY FUNCTION , 2016, 1603.07729.

[84]  L. Trouille,et al.  MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX , 2008, 0811.1042.

[85]  M. Salvato,et al.  AEGIS-X: DEEP CHANDRA IMAGING OF THE CENTRAL GROTH STRIP , 2015, 1503.09078.

[86]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[87]  Claus Leitherer,et al.  Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph , 2016 .

[88]  P. W. Wang,et al.  The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.

[89]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[90]  A. Strom,et al.  RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.

[91]  B. Robertson,et al.  Spectroscopic detection of C iv λ1548 in a galaxy at z = 7.045: implications for the ionizing spectra of reionization-era galaxies , 2015, 1504.06881.

[92]  M. Franx,et al.  A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT z = 7.730 USING KECK/MOSFIRE , 2015, 1502.05399.

[93]  Alison L. Coil,et al.  THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.

[94]  C. Morisset,et al.  Excitation properties of galaxies with the highest [OIII]/[OII] ratios: No evidence for massive escape of ionizing photons , 2015, 1503.00320.

[95]  Piero Madau,et al.  COSMIC REIONIZATION AFTER PLANCK: COULD QUASARS DO IT ALL? , 2015, 1507.07678.

[96]  M. Pettini,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 * , 2001 .

[97]  Elisabet Leitet,et al.  Escape of Lyman continuum radiation from local galaxies - Detection of leakage from the young starburst Tol 1247-232 , 2013, 1302.6971.

[98]  M. Sawicki,et al.  Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2* , 2005, astro-ph/0507519.

[99]  A. Fontana,et al.  THE LACK OF INTENSE Lyα IN ULTRADEEP SPECTRA OF z = 7 CANDIDATES IN GOODS-S: IMPRINT OF REIONIZATION? , 2010, 1010.2754.

[100]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[101]  M. Ouchi,et al.  Ionization state of inter-stellar medium in galaxies: evolution, SFR-M * -Z dependence, and ionizing photon escape , 2013, 1309.0207.

[102]  R. Bouwens,et al.  Lyα and C iii] emission in z = 7–9 Galaxies: accelerated reionization around luminous star-forming systems? , 2016, 1606.01304.

[103]  P. V. D. Okkum,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using L ATEX style emulateapj A SIGNIFICANT POPULATION OF RED, NEAR-IR SELECTED HIGH REDSHIFT GALAXIES 1 , 2003 .

[104]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[105]  J. V'ilchez,et al.  THE STAR FORMATION HISTORY AND METAL CONTENT OF THE GREEN PEAS. NEW DETAILED GTC-OSIRIS SPECTROPHOTOMETRY OF THREE GALAXIES , 2012, 1202.3419.

[106]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[107]  G. Lewis,et al.  The Lyman Continuum Escape Fraction of The Cosmic Horseshoe: A Test of Indirect Estimates , 2016, 1603.02309.

[108]  M. Oguri,et al.  THE PHYSICAL CONDITIONS, METALLICITY AND METAL ABUNDANCE RATIOS IN A HIGHLY MAGNIFIED GALAXY AT z = 3.6252 , 2013, 1310.6695.

[109]  B. Garilli,et al.  Limits on the LyC signal from z~3 sources with secure redshift and HST coverage in the E-CDFS field , 2016, 1601.03057.

[110]  G. Zamorani,et al.  A LOW ESCAPE FRACTION OF IONIZING PHOTONS OF L > L* LYMAN BREAK GALAXIES AT z = 3.3 , 2011, 1104.5237.

[111]  Masanori Iye,et al.  ACCELERATED EVOLUTION OF THE Lyα LUMINOSITY FUNCTION AT z ≳ 7 REVEALED BY THE SUBARU ULTRA-DEEP SURVEY FOR Lyα EMITTERS AT z = 7.3 , 2014, 1404.6066.

[112]  R. Bouwens,et al.  CHARACTERIZING FAINT GALAXIES IN THE REIONIZATION EPOCH: LBT CONFIRMS TWO L < 0.2 L⋆ SOURCES AT z = 6.4 BEHIND THE CLASH/FRONTIER FIELDS CLUSTER MACS0717.5+3745 , 2013, 1312.6299.

[113]  V. Wild,et al.  The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.

[114]  Hooshang Nayyeri,et al.  SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.

[115]  P. Papaderos,et al.  COMPLEX GAS KINEMATICS IN COMPACT, RAPIDLY ASSEMBLING STAR-FORMING GALAXIES , 2012, 1207.0509.

[116]  D. Schaerer,et al.  Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy , 2016, Nature.

[117]  C. C. Steidel,et al.  NARROWBAND IMAGING OF ESCAPING LYMAN-CONTINUUM EMISSION IN THE SSA22 FIELD, , 2011, 1102.0286.

[118]  Michael D. Karcher,et al.  The little Galaxies that could (reionize the universe): predicting faint end slopes & escape fractions at z>4 , 2016, 1606.05352.

[119]  Naveen A. Reddy,et al.  NARROWBAND LYMAN-CONTINUUM IMAGING OF GALAXIES AT z ∼ 2.85 , 2013, 1306.1535.

[120]  Guillermo Barro,et al.  THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD , 2015, 1509.07172.

[121]  Brian Siana,et al.  Q1549-C25: A CLEAN SOURCE OF LYMAN-CONTINUUM EMISSION AT z = 3.15 , 2016, 1606.00443.

[122]  T. Marquart,et al.  Lyman continuum leaking galaxies : Search strategies and local candidates , 2013, 1303.1576.

[123]  Toru Yamada,et al.  Searching for candidates of Lyman continuum sources - revisiting the SSA22 field , 2015, 1509.03996.

[124]  L. Bradley,et al.  INFERENCES ON THE DISTRIBUTION OF Lyα EMISSION OF z ∼ 7 AND z ∼ 8 GALAXIES , 2011 .

[125]  A. Fontana,et al.  ConvPhot: A profile-matching algorithm for precision photometry , 2007, astro-ph/0701232.

[126]  Benjamin D. Johnson,et al.  THE VERY FAINT END OF THE UV LUMINOSITY FUNCTION OVER COSMIC TIME: CONSTRAINTS FROM THE LOCAL GROUP FOSSIL RECORD , 2014, 1409.4772.

[127]  M. Lueker,et al.  COSMIC MICROWAVE BACKGROUND CONSTRAINTS ON THE DURATION AND TIMING OF REIONIZATION FROM THE SOUTH POLE TELESCOPE , 2011, 1111.6386.

[128]  M. Dijkstra,et al.  THE Lyα–LyC CONNECTION: EVIDENCE FOR AN ENHANCED CONTRIBUTION OF UV-FAINT GALAXIES TO COSMIC REIONIZATION , 2016, 1604.08208.

[129]  NOAO,et al.  New Constraints on the Lyman Continuum Escape Fraction at z ~ 1.3 , 2007, 0706.4093.

[130]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[131]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[132]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[133]  K. Schawinski,et al.  THE CHANDRA COSMOS LEGACY SURVEY: OVERVIEW AND POINT SOURCE CATALOG , 2016, 1601.00941.

[134]  Michael J. Rutkowski,et al.  LYMAN CONTINUUM ESCAPE FRACTION OF STAR-FORMING DWARF GALAXIES AT z ∼ 1 , 2015, 1511.01998.

[135]  C. Lintott,et al.  Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.

[136]  I. Smail,et al.  The nature of Hβ+[O III] and [O II] emitters to z ∼ 5 with HiZELS: stellar mass functions and the evolution of EWs , 2016, 1604.02456.

[137]  A. Fontana,et al.  EVIDENCE OF VERY LOW METALLICITY AND HIGH IONIZATION STATE IN A STRONGLY LENSED, STAR-FORMING DWARF GALAXY AT z = 3.417 , 2014, 1403.6470.