A geometric idea to solve the eikonal equation

Given a closed plane curve <b>c</b>(<i>t</i>) = (<i>c</i><inf>1</inf>,<i>c</i><inf>2</inf>) (<i>t</i>) ∈ ε R<sup>2</sup> and associated function values g(<i>t</i>) we present a geometric idea and an algorithm to solve the equation ||∇<i>f</i>|| = <i>a</i> = const. with respect to the boundary values <i>g</i>(<i>t</i>) along the boundary <b>c</b>(<i>t</i>). This is equivalent to finding a developable surface <i>D</i> of constant slope <i>a</i> = tan α through the spatial curve <i>C</i> determined by (<i>c</i><inf>1</inf>, <i>c</i><inf>2</inf>, <i>g</i>) (<i>t</i>). The presented method constructs level curves of the surface <i>D.</i> We put some emphasis on the treatment of the singularities of the solution which are <i>D</i>'s self intersections.

[1]  Chih-Hsing Chu,et al.  Developable Bézier patches: properties and design , 2002, Comput. Aided Des..

[2]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[3]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[4]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[5]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[6]  J. Hoschek Interpolation and approximation with developable B-spline surfaces , 1995 .

[7]  Johannes Wallner,et al.  Approximation algorithms for developable surfaces , 1999, Comput. Aided Geom. Des..

[8]  Günter Aumann,et al.  A simple algorithm for designing developable Bézier surfaces , 2003, Comput. Aided Geom. Des..

[9]  Takashi Maekawa,et al.  Design for manufacturing using B-spline developable surfaces , 1998 .

[10]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[11]  Rolf Klein,et al.  Algorithmische Geometrie , 1997 .

[12]  Changmook Chun,et al.  Design of Developable Surfaces Using Optimal Control , 2002 .

[13]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[14]  H. Pottmann,et al.  Computational Line Geometry , 2001 .

[15]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[16]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .