Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties

In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge–Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces to Lie groups. Because of their variational design, these integrators preserve a discrete momentum map (in the presence of symmetry) and a symplectic form.In a companion paper, we perform a numerical analysis of these methods and report on numerical experiments on the rigid body and chaotic dynamics of an underwater vehicle. The numerics reveal that these variational integrators possess structure-preserving properties that methods designed to preserve momentum (using the coadjoint action of the Lie group) and energy (for example, by projection) lack.

[1]  G. H. Livens IX. — On Hamilton's Principle and the Modified Function in Analytical Dynamics. , 1920 .

[2]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[3]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[4]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[5]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[6]  A. Veselov Integrable discrete-time systems and difference operators , 1988 .

[7]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[8]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[9]  D. Broomhead,et al.  The dynamics of numerics and the numerics of dynamics , 1992 .

[10]  Mark Austin,et al.  Almost Poisson Integration of Rigid Body Systems , 1993 .

[11]  J. Marsden,et al.  The Reduced Euler-Lagrange Equations , 1993 .

[12]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[13]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[14]  J. C. Simo,et al.  Conserving algorithms for the n dimensional rigid body , 1995 .

[15]  R. McLachlan,et al.  Equivariant constrained symplectic integration , 1995 .

[16]  H. Munthe-Kaas Lie-Butcher theory for Runge-Kutta methods , 1995 .

[17]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[18]  B. Leimkuhler,et al.  Symplectic splitting methods for rigid body molecular dynamics , 1997 .

[19]  Antonella Zanna,et al.  Numerical integration of differential equations on homogeneous manifolds , 1997 .

[20]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[21]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[22]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[23]  Naomi Ehrich Leonard,et al.  Dynamics of the Kirchhoff equations I: coincident centers of gravity and buoyancy , 1998 .

[24]  J. Marsden,et al.  Symplectic-energy-momentum preserving variational integrators , 1999 .

[25]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  A. Iserles,et al.  Methods for the approximation of the matrix exponential in a Lie‐algebraic setting , 1999, math/9904122.

[27]  J. Marsden,et al.  Discrete Euler-Poincaré and Lie-Poisson equations , 1999, math/9909099.

[28]  A. Bobenko,et al.  Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .

[29]  A. Bobenko,et al.  Discrete Lagrangian Reduction, Discrete Euler–Poincaré Equations, and Semidirect Products , 1999, math/9906108.

[30]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[31]  Arieh Iserles,et al.  On Cayley-Transform Methods for the Discretization of Lie-Group Equations , 2001, Found. Comput. Math..

[32]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[33]  Kenth Engø-Monsen,et al.  Numerical Integration of Lie-Poisson Systems While Preserving Coadjoint Orbits and Energy , 2001, SIAM J. Numer. Anal..

[34]  J. Marsden,et al.  Variational principles for Lie-Poisson and Hamilton-Poincaré equations , 2003 .

[35]  F. Leite,et al.  The Moser-Veselov equation , 2003 .

[36]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[37]  M.A. MacIver,et al.  Designing future underwater vehicles: principles and mechanisms of the weakly electric fish , 2004, IEEE Journal of Oceanic Engineering.

[38]  J. Marsden,et al.  Variational time integrators , 2004 .

[39]  Jerrold E. Marsden,et al.  Locomotion of Articulated Bodies in a Perfect Fluid , 2005, J. Nonlinear Sci..

[40]  N. McClamroch,et al.  A lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[41]  N. McClamroch,et al.  Lie group variational integrators for the full body problem , 2005, math/0508365.

[42]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[43]  J. Marsden,et al.  Dirac structures in Lagrangian mechanics Part II: Variational structures , 2006 .

[44]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[45]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[46]  S. Lall,et al.  Discrete variational Hamiltonian mechanics , 2006 .

[47]  J. Marsden,et al.  Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems , 2006 .

[48]  J. Marsden,et al.  Discrete Mechanics and Optimal Control for Constrained Multibody Dynamics , 2007 .

[49]  H. Owhadi,et al.  Stochastic Variational Partitioned Runge-Kutta Integrators for Constrained Systems , 2007, 0709.2222.

[50]  N. Bou-Rabee,et al.  Hamilton-Pontryagin Integrators on Lie Groups , 2007 .

[51]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[52]  E. Celledoni Lie group methods , 2009 .