Pericentric chromatin loops function as a nonlinear spring in mitotic force balance

During mitosis, cohesin- and condensin-based pericentric chromatin loops function as a spring network to balance spindle microtubule force.

[1]  K. Kim,et al.  In search of noise-induced bimodality , 2012, BMC Biology.

[2]  A. Mogilner,et al.  Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. , 2006, Biophysical journal.

[3]  K. Nasmyth,et al.  Identification of Cohesin Association Sites at Centromeres and along Chromosome Arms , 1999, Cell.

[4]  H. Ris,et al.  Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. , 1976, Journal of cell science.

[5]  E. Salmon,et al.  Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae , 1995, The Journal of cell biology.

[6]  K. Ito,et al.  The Polyrotaxane Gel: A Topological Gel by Figure‐of‐Eight Cross‐links , 2001 .

[7]  S. Biggins,et al.  Pericentromeric sister chromatid cohesion promotes kinetochore biorientation. , 2009, Molecular biology of the cell.

[8]  John R Yates,et al.  Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. , 2010, Molecular cell.

[9]  Kerry Bloom,et al.  Bub1 Kinase and Sgo1 Modulate Pericentric Chromatin in Response to Altered Microtubule Dynamics , 2012, Current Biology.

[10]  T. Itoh,et al.  Cohesin relocation from sites of chromosomal loading to places of convergent transcription , 2004, Nature.

[11]  G. Goshima,et al.  Establishing Biorientation Occurs with Precocious Separation of the Sister Kinetochores, but Not the Arms, in the Early Spindle of Budding Yeast , 2000, Cell.

[12]  Kerry Bloom,et al.  Mitotic Spindle Form and Function , 2012, Genetics.

[13]  T. Davis,et al.  Mitosis puts sisters in a strained relationship: force generation at the kinetochore. , 2012, Experimental cell research.

[14]  J. Bachant,et al.  DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. , 2008, Molecular biology of the cell.

[15]  K. Nasmyth,et al.  Both Interaction Surfaces within Cohesin's Hinge Domain Are Essential for Its Stable Chromosomal Association , 2010, Current Biology.

[16]  Alex Mogilner,et al.  Towards a quantitative understanding of mitotic spindle assembly and mechanics , 2010, Journal of Cell Science.

[17]  Tamir Gonen,et al.  Tension directly stabilizes reconstituted kinetochore-microtubule attachments , 2010, Nature.

[18]  K. Takagaki,et al.  Kinetochore stretching inactivates the spindle assembly checkpoint , 2009, The Journal of cell biology.

[19]  K. Nasmyth,et al.  ATP Hydrolysis Is Required for Relocating Cohesin from Sites Occupied by Its Scc2/4 Loading Complex , 2011, Current Biology.

[20]  J. Howard,et al.  The force exerted by a single kinesin molecule against a viscous load. , 1994, Biophysical journal.

[21]  Kerry Bloom,et al.  Hypothesis testing via integrated computer modeling and digital fluorescence microscopy. , 2007, Methods.

[22]  E. Wachtel,et al.  Transition of chromatin from the "10 nm" lower order structure, to the "30 nm" higher order structure as followed by small angle X-ray scattering. , 1987, Journal of molecular biology.

[23]  D. J. Clarke,et al.  In vivo analysis of chromosome condensation in Saccharomyces cerevisiae. , 2006, Molecular biology of the cell.

[24]  M. Hoyt,et al.  Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. , 1997, Molecular biology of the cell.

[25]  Morten O. Christensen,et al.  Mitotic chromosomes are constrained by topoisomerase II–sensitive DNA entanglements , 2010, The Journal of cell biology.

[26]  C. Haering,et al.  Condensin structures chromosomal DNA through topological links , 2011, Nature Structural &Molecular Biology.

[27]  Yoshinori Watanabe Geometry and force behind kinetochore orientation: lessons from meiosis , 2012, Nature Reviews Molecular Cell Biology.

[28]  K. Nasmyth,et al.  Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation , 2000, Nature Cell Biology.

[29]  A. Strunnikov,et al.  Condensin function at centromere chromatin facilitates proper kinetochore tension and ensures correct mitotic segregation of sister chromatids , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[30]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[31]  S. Gasser,et al.  Modules for cloning‐free chromatin tagging in Saccharomyces cerevisae , 2008, Yeast.

[32]  J. McIntosh,et al.  High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. , 1999, Molecular biology of the cell.

[33]  Barbara J Meyer,et al.  C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. , 2002, Genes & development.

[34]  S. Granick,et al.  A multitude of macromolecules , 2004, Nature materials.

[35]  Kerry Bloom,et al.  Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring , 2011, The Journal of cell biology.

[36]  Patrick Heun,et al.  Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.

[38]  Kerry Bloom,et al.  Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. , 2005, Molecular biology of the cell.

[39]  Julian Haase,et al.  Pericentric Chromatin Is Organized into an Intramolecular Loop in Mitosis , 2008, Current Biology.

[40]  O. Cohen-Fix,et al.  Shaping the nucleus: Factors and forces , 2012, Journal of cellular biochemistry.

[41]  D N Mastronarde,et al.  Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle , 1995, The Journal of cell biology.

[42]  M. Lampson,et al.  Sensing Chromosome Bi-Orientation by Spatial Separation of Aurora B Kinase from Kinetochore Substrates , 2009, Science.

[43]  A. Strunnikov,et al.  Human Condensin Function Is Essential for Centromeric Chromatin Assembly and Proper Sister Kinetochore Orientation , 2009, PloS one.

[44]  David C. Bouck,et al.  Pericentric Chromatin Is an Elastic Component of the Mitotic Spindle , 2007, Current Biology.

[45]  V. Guacci,et al.  The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. , 1999, Molecular cell.

[46]  David J Odde,et al.  Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. , 2003, Biophysical journal.

[47]  Micromechanics of human mitotic chromosomes. , 2011, Physical biology.

[48]  Christel Krueger,et al.  Cohesin Is Required for Higher-Order Chromatin Conformation at the Imprinted IGF2-H19 Locus , 2009, PLoS genetics.

[49]  E. Nogales,et al.  Visualizing kinetochore architecture. , 2011, Current opinion in structural biology.

[50]  S. Elledge,et al.  The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. , 2002, Molecular cell.

[51]  Tim Stearns,et al.  Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex , 1997, The Journal of cell biology.

[52]  R. Superfine,et al.  DNA relaxation dynamics as a probe for the intracellular environment , 2009, Proceedings of the National Academy of Sciences.

[53]  T. Hirano At the heart of the chromosome: SMC proteins in action , 2006, Nature Reviews Molecular Cell Biology.

[54]  Boris N. Kholodenko,et al.  Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise , 2012, BMC Systems Biology.

[55]  Kerry Bloom,et al.  Budding Yeast Chromosome Structure and Dynamics during Mitosis , 2001, The Journal of cell biology.

[56]  A. Mogilner,et al.  Early spindle assembly in Drosophila embryos: role of a force balance involving cytoskeletal dynamics and nuclear mechanics. , 2005, Molecular biology of the cell.

[57]  M. Rubinstein,et al.  Amplification of tension in branched macromolecules. , 2009, Physical review letters.

[58]  N. Dyson,et al.  Loss of pRB causes centromere dysfunction and chromosomal instability. , 2010, Genes & development.

[59]  Guillaume Gay,et al.  A stochastic model of kinetochore–microtubule attachment accurately describes fission yeast chromosome segregation , 2012, The Journal of cell biology.

[60]  J. McIntosh,et al.  Biophysics of mitosis , 2012, Quarterly Reviews of Biophysics.

[61]  David Pellman,et al.  The molecular function of Ase1p , 2003, The Journal of cell biology.

[62]  Joshua T. Jones,et al.  Efficient Chromosome Capture Requires a Bias in the ‘Search-and-Capture’ Process during Mitotic-Spindle Assembly , 2005, Current Biology.

[63]  Benjamin D. Harrison,et al.  Persistent mechanical linkage between sister chromatids throughout anaphase , 2009, Chromosoma.

[64]  Jesse C. Gatlin,et al.  Condensin regulates the stiffness of vertebrate centromeres. , 2009, Molecular biology of the cell.

[65]  David J. Odde,et al.  Model Convolution: A Computational Approach to Digital Image Interpretation , 2010, Cellular and molecular bioengineering.

[66]  Nancy Kleckner,et al.  Cohesins Bind to Preferential Sites along Yeast Chromosome III, with Differential Regulation along Arms versus the Centric Region , 1999, Cell.

[67]  F. Nédélec,et al.  Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast , 2007, Cell.

[68]  A. Strunnikov,et al.  Condensin Binding at Distinct and Specific Chromosomal Sites in the Saccharomyces cerevisiae Genome , 2005, Molecular and Cellular Biology.

[69]  K. Bloom,et al.  Tension-dependent nucleosome remodeling at the pericentromere in yeast , 2012, Molecular biology of the cell.

[70]  Russell M. Taylor,et al.  FluoroSim: A Visual Problem-Solving Environment for Fluorescence Microscopy , 2008, VCBM.

[71]  Earl F. Glynn,et al.  Genome-Wide Mapping of the Cohesin Complex in the Yeast Saccharomyces cerevisiae , 2004, PLoS biology.

[72]  K. Bloom,et al.  Tension Management in the Kinetochore , 2010, Current Biology.

[73]  M. Hoyt,et al.  Kinesin-related proteins required for structural integrity of the mitotic spindle , 1992, Cell.

[74]  Peter K. Sorger,et al.  Transient Sister Chromatid Separation and Elastic Deformation of Chromosomes during Mitosis in Budding Yeast , 2000, Cell.

[75]  A. van Oudenaarden,et al.  Using Gene Expression Noise to Understand Gene Regulation , 2012, Science.

[76]  Kerry Bloom,et al.  Dynamic Microtubules Lead the Way for Spindle Positioning , 2004, Nature Reviews Molecular Cell Biology.

[77]  Erica A. Peterson,et al.  Condensin is required for chromosome arm cohesion during mitosis. , 2006, Genes & development.

[78]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .