A Lagrangian approach for the minimum spanning tree problem with conflicting edge pairs

This paper addresses the Minimum Spanning Tree Problem with Conflicting Edge Pairs, a variant of the classical Minimum Spanning Tree where, given a list of conflicting edges, the goal is to find the cheapest spanning tree with no edges in conflict. We adopt a Lagrangian relaxation approach together with a dual ascent and a subgradient procedure to find tight lower bounds on the optimal solution. The algorithm is also equipped with a heuristics approach which provides an upper bound by removing the conflicts from possible infeasible solutions met during the calculation of the lower bounds. The computational results, carried out on benchmark instances, show that the proposed algorithm finds the optimal solutions on several instances. ∗fcarrabs@unisa.it (Corresponding author) †manlio.gaudioso@unical.it

[1]  Abraham P. Punnen,et al.  The minimum spanning tree problem with conflict constraints and its variations , 2011, Discret. Optim..

[2]  Péter Kovács,et al.  LEMON - an Open Source C++ Graph Template Library , 2011, WGT@ETAPS.

[3]  Temel Öncan,et al.  The minimum cost perfect matching problem with conflict pair constraints , 2013, Comput. Oper. Res..

[4]  Ulrich Pferschy,et al.  The maximum flow problem with disjunctive constraints , 2013, J. Comb. Optim..

[5]  Annabella Astorino,et al.  Lagrangian relaxation for the directional sensor coverage problem with continuous orientation , 2018 .

[6]  Carmine Cerrone,et al.  A multiethnic genetic approach for the minimum conflict weighted spanning tree problem , 2019, Networks.

[7]  A. M. Geoffrion Lagrangean Relaxation and Its Uses in Integer Programming , 1972 .

[8]  Dag Haugland,et al.  An Integer Programming Model for Branching Cable Layouts in Offshore Wind Farms , 2015, MCO.

[9]  Antonino Chiarello,et al.  Truck synchronization at single door cross-docking terminals , 2018, OR Spectr..

[10]  Raffaele Cerulli,et al.  Lower and upper bounds for the spanning tree with minimum branch vertices , 2013, Comput. Optim. Appl..

[11]  Sebastián Urrutia,et al.  A branch and cut algorithm for minimum spanning trees under conflict constraints , 2013, Optim. Lett..

[12]  M. Fisher,et al.  A multiplier adjustment method for the generalized assignment problem , 1986 .

[13]  Abraham P. Punnen,et al.  The Quadratic Minimum Spanning Tree Problem and its Variations , 2018, Discret. Optim..

[14]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[15]  Ulrich Pferschy,et al.  Determining a Minimum Spanning Tree with Disjunctive Constraints , 2009, ADT.

[16]  Giovanna Miglionico,et al.  On solving the Lagrangian dual of integer programs via an incremental approach , 2009, Comput. Optim. Appl..

[17]  Antonio Frangioni,et al.  About Lagrangian Methods in Integer Optimization , 2005, Ann. Oper. Res..

[18]  Ulrich Pferschy,et al.  The Knapsack Problem with Conflict Graphs , 2009, J. Graph Algorithms Appl..

[19]  Gerhard J. Woeginger,et al.  Paths, trees and matchings under disjunctive constraints , 2011, Discret. Appl. Math..

[20]  Christian Laforest,et al.  Trees in Graphs with Conflict Edges or Forbidden Transitions , 2013, TAMC.

[21]  Ruslan Sadykov,et al.  Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm , 2013, INFORMS J. Comput..

[22]  Raffaele Cerulli,et al.  Minimum spanning tree with conflicting edge pairs: a branch-and-cut approach , 2018 .

[23]  Giovanna Miglionico,et al.  A Lagrangean-based decomposition approach for the link constrained Steiner tree problem** , 2018, Optim. Methods Softw..

[24]  Borzou Rostami,et al.  Lower bounds for the Quadratic Minimum Spanning Tree Problem based on reduced cost computation , 2015, Comput. Oper. Res..

[26]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.