The Maximum Partition Matching Problem with Applications

Let ${\cal S} = {C1, C2, . . . , Ck}$ be a collection of pairwise disjoint subsets of U = { 1, 2, . . . , n} such that $\bigcup_{i = 1}^k Ci = U. A partition matching of $\cal S$ consists of two subsets {a1, . . . , am} and {b1, . . ., bm} of U together with a sequence of distinct partitions of $\cal S$: $({\cal A}_1, {\cal B}_1), \ldots, ({\cal A}_m, {\cal B}_m)$ such that ai is contained in a subset in the collection ${\cal A}_i$ and bi is contained in a subset in the collection ${\cal B}_i$ for all i = 1, . . . , m. An efficient algorithm is developed that constructs a maximum partition matching for a given collection $\cal S$. The algorithm can be used to construct optimal parallel routing between two nodes in interconnection networks.

[1]  Robert W. Irving,et al.  The Stable marriage problem - structure and algorithms , 1989, Foundations of computing series.

[2]  Khaled Day,et al.  A Comparative Study of Topological Properties of Hypercubes and Star Graphs , 1994, IEEE Trans. Parallel Distributed Syst..

[3]  Martin Dyer,et al.  The Stable Marriage Problem: Structure and Algorithms , 1991 .

[4]  Jelena Misic,et al.  Routing Function and Deadlock Avoidance in a Star Graph Interconnection Network , 1994, J. Parallel Distributed Comput..

[5]  Chi-Chang Chen,et al.  Optimal Parallel Routing in Star Networks , 1997, IEEE Trans. Computers.

[6]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Zvi Galil,et al.  Short length versions of Menger's theorem , 1995, STOC '95.

[9]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[10]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[11]  S. Lakshmivarahan,et al.  Characterization of node disjoint (parallel) path in star graphs , 1991, [1991] Proceedings. The Fifth International Parallel Processing Symposium.

[12]  Chi-Chang Chen,et al.  Vertex-disjoint routings in star graphs , 1995, Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing.

[13]  R. M. Thrall Review: Garrett Birkhoff and Saunders MacLane, A Survey of Modern Algebra , 1942 .

[14]  Chi-Chang Chen,et al.  Combinatorial and algebraic methods in star and de bruijn networks , 1995 .

[15]  Pradip K. Srimani,et al.  Topological properties of star graphs , 1993 .

[16]  Jonathan L. Gross,et al.  Finding a maximum-genus graph imbedding , 1988, JACM.

[17]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.