Design of Multilayer Dielectric Cover to Enhance Gain and Efficiency of Slot Arrays

An effective design procedure, based on the Elliot synthesis method, is proposed to investigate the properties of waveguide slot arrays with multilayer dielectric cover. Then, the features of the designed arrays are analyzed by means of a FEM commercial software, namely, Ansys HFSS 13. We show how a proper choice of the dielectric cover configuration allows increasing the array gain and aperture efficiency, while taking advantage of the properties of the radome structure, in terms of insulation, protection, and pressurization of the radiating waveguides. Therefore, a significant outcome of the optimal choice of the multilayer dielectric cover is the reduction of the number of slots with respect to an array radiating into free space with the same gain and efficiency, with a consequent reduction of the production cost.

[1]  Robert S. Elliott,et al.  An improved design procedure for small arrays of shunt slots , 1983 .

[2]  Filippo Capolino,et al.  Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement , 2006 .

[3]  Hu Yang,et al.  Efficient Evaluation of the External Mutual Coupling in Dielectric-Covered Waveguide Slot Arrays , 2012 .

[4]  Giorgio Franceschetti,et al.  Array synthesis with excitation constraints , 1988 .

[5]  W. Marsden I and J , 2012 .

[6]  Makoto Ando,et al.  Alternating-phase fed single-layer slotted waveguide arrays with chokes dispensing with narrow wall contacts , 2001 .

[7]  G. V. Trentini Partially reflecting sheet arrays , 1956 .

[8]  Jim Euchner Design , 2014, Catalysis from A to Z.

[9]  Giorgio Montisci,et al.  A Rigorous Analysis of Dielectric-Covered Narrow Longitudinal Shunt Slots With Finite Wall Thickness , 1999 .

[10]  S.R. Rengarajan,et al.  Design, Analysis, and Development of a Large Ka-Band Slot Array for Digital Beam-Forming Application , 2009, IEEE Transactions on Antennas and Propagation.

[11]  G. Montisci,et al.  Design of Circularly Polarized Waveguide Slot Linear Arrays , 2006, IEEE Transactions on Antennas and Propagation.

[12]  Nicolaos G. Alexopoulos,et al.  Gain enhancement methods for printed circuit antennas , 1984 .

[13]  Giorgio Montisci,et al.  Effect of the Feeding T-Junctions in the Performance of Planar Waveguide Slot Arrays , 2012, IEEE Antennas and Wireless Propagation Letters.

[14]  S R Rengarajan,et al.  Waveguide-Slot Array Antenna Designs for Low-Average-Sidelobe Specifications , 2010, IEEE Antennas and Propagation Magazine.

[15]  G. Montisci,et al.  Design of Dielectric-Covered Planar Arrays of Longitudinal Slots , 2009, IEEE Antennas and Wireless Propagation Letters.

[16]  R. Elliott Antenna Theory and Design , 2003 .

[17]  Giorgio Montisci,et al.  ACCURATE MODELING OF COUPLING JUNCTIONS IN DIELECTRIC COVERED WAVEGUIDE SLOT ARRAYS , 2011 .

[18]  Lotfollah Shafai,et al.  Enhancement of microstrip antenna directivity using double-superstrate configurations , 2007, Canadian Journal of Electrical and Computer Engineering.

[19]  Ashutosh Kedar,et al.  Parametric Study of Flat Sandwich Multilayer Radome , 2006 .

[20]  Giorgio Montisci,et al.  Accurate characterization of the interaction between coupling slots and waveguide bends in waveguide slot arrays , 2000 .

[21]  K. Michalski,et al.  Multilayered media Green's functions in integral equation formulations , 1997 .

[22]  M. Ando,et al.  Double-Layer Full-Corporate-Feed Hollow-Waveguide Slot Array Antenna in the 60-GHz Band , 2011, IEEE Transactions on Antennas and Propagation.

[23]  G. Montisci,et al.  Waveguide slot antennas for circularly polarized radiated field , 2004, IEEE Transactions on Antennas and Propagation.

[24]  Renato Orta,et al.  Performance degradation of dielectric radome covered antennas , 1988 .

[25]  Nicolaos G. Alexopoulos,et al.  Fundamental superstrate (cover) effects on printed circuit antennas , 1984 .

[26]  S. Costanzo,et al.  Synthesis of Slot Arrays on Integrated Waveguides , 2010, IEEE Antennas and Wireless Propagation Letters.