Taming the Edwald sum in the computer simulation of charged systems

Abstract The approximation of the Ewald summation for the potential energy of a system of charges with periodic boundary conditions, as used in the computer simulation methods of Monte Carlo and molecular dynamics, is discussed. Isotropic approximations are presented for calculations at low charge density, and systematic approximation using. Kubic Harmonics is advanced as the best means for a more accurate approximation. The case of the potential energy of a periodic system of point dipoles is discussed and compared with the reaction-field method and with Ladd's summation.

[1]  D. N. Card,et al.  Calculations on the ``Restricted Primitive Model'' for 1–1 Electrolyte Solutions , 1972 .

[2]  M. Weber,et al.  Molecular dynamics simulations of the structure of rare-earth-doped beryllium fluoride glasses , 1981 .

[3]  I. R. Mcdonald,et al.  Statistical mechanics of dense ionized matter. III. Dynamical properties of the classical one-component plasma , 1975 .

[4]  Anthony J. C. Ladd,et al.  Monte-Carlo simulation of water , 1977 .

[5]  T. Soules A molecular dynamic calculation of the structure of sodium silicate glasses , 1979 .

[6]  D. Adams,et al.  Computer simulation of ionic systems: The distorting effects of the boundary conditions , 1979 .

[7]  B. Larsen Monte Carlo calculations on a charged hard sphere model , 1974 .

[8]  H. Bethe,et al.  A Method for Obtaining Electronic Eigenfunctions and Eigenvalues in Solids with An Application to Sodium , 1947 .

[9]  L. V. Woodcock,et al.  Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. Part 1.—Potassium chloride , 1971 .

[10]  J. Hansen Statistical Mechanics of Dense Ionized Matter. I. Equilibrium Properties of the Classical One-Component Plasma , 1973 .

[11]  G. Doolen,et al.  Improved equation of state for the classical one-component plasma , 1980 .

[12]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[13]  M. P. Tosi,et al.  Cohesion of Ionic Solids in the Born Model , 1964 .

[14]  T. Østvold,et al.  Monte Carlo Studies on Fused Salts. II. Calculations on a Model of Fused Lithium Chloride at 1073 degrees K. , 1969 .

[15]  Thomas F. Soules,et al.  A molecular dynamic calculation of the structure of B2O3 glass , 1980 .

[16]  H. Kornfeld Die Berechnung elektrostatischer Potentiale und der Energie von Dipol- und Quadrupolgittern , 1924 .

[17]  D. J. Adams,et al.  On the use of the Ewald summation in computer simulation , 1983 .

[18]  J. A. Barker,et al.  Monte Carlo studies of the dielectric properties of water-like models , 1973 .

[19]  D. Adams,et al.  Static dielectric properties of the Stockmayer fluid from computer simulation , 1981 .

[20]  Graham Hills,et al.  The computer simulation of polar liquids , 1979 .

[21]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[22]  M. Dixon,et al.  Interionic potentials in alkali halides and their use in simulations of the molten salts , 1976 .

[23]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[24]  O. Steinhauser,et al.  On the calculation of the dielectric constant using the Ewald-Kornfeld tensor , 1983 .

[25]  T. Soules An approximation of the Coulomb force for molecular dynamic calculations , 1980 .

[26]  S. N Stuart,et al.  Depolarization correction for Coulomb lattice sums , 1978 .

[27]  O. Steinhauser,et al.  On the calculation of the frequency-dependent dielectric constant in computer simulations , 1983 .

[28]  D. Adams Computer simulation of highly polar liquids: The hard sphere plus point dipole potential , 1980 .

[29]  V. Jansoone Dielectric properties of a model fluid with the Monte Carlo method , 1974 .

[30]  R. Mccrory,et al.  Further Monte Carlo calculations for the classical one-component plasma in the range 100 ⩽ Γ ⩽ 160: The FCC lattice , 1984 .

[31]  A. Ladd Long-range dipolar interactions in computer simulations of polar liquids , 1978 .

[32]  E. Teller,et al.  Monte Carlo Study of a One‐Component Plasma. I , 1966 .