Transmission-Electron-Microscopy-Generated Atomic Defects in Two-Dimensional Nanosheets and Their Integration in Devices for Electronic and Optical Sensing

[1]  H. Steinberg,et al.  Spectroscopy of NbSe2 Using Energy-Tunable Defect-Embedded Quantum Dots. , 2021, Nano letters.

[2]  U. Kaiser,et al.  Polymer-assisted TEM specimen preparation method for oxidation-sensitive 2D materials , 2020, Nanotechnology.

[3]  Kenji Watanabe,et al.  Quantum-dot assisted spectroscopy of degeneracy-lifted Landau levels in graphene , 2020, Nature Communications.

[4]  J. Reimers,et al.  Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride , 2020, Nature Materials.

[5]  Jannik C. Meyer,et al.  Quantifying transmission electron microscopy irradiation effects using two-dimensional materials , 2019, Nature Reviews Physics.

[6]  Qing Peng,et al.  Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-MoS2 Few Layers , 2019, Applied Sciences.

[7]  A. Krasheninnikov,et al.  Observation of charge density waves in free-standing 1T-TaSe2 monolayers by transmission electron microscopy , 2018, Applied Physics Letters.

[8]  H. Steinberg,et al.  Tunneling into the Vortex State of NbSe2 with van der Waals Junctions. , 2018, Nano letters.

[9]  M. Dresselhaus,et al.  Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. , 2018, ACS nano.

[10]  H. Steinberg,et al.  Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions , 2017, Nature Communications.

[11]  Jannik C. Meyer,et al.  Engineering and modifying two-dimensional materials by electron beams , 2017, Microscopy and Microanalysis.

[12]  Jannik C Meyer,et al.  Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. , 2017, Ultramicroscopy.

[13]  Liantuan Xiao,et al.  Atomic‐Layered MoS2 as a Tunable Optical Platform , 2016 .

[14]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[15]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[16]  Shanshan Yao,et al.  Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS₂ films onto arbitrary substrates. , 2014, ACS nano.

[17]  F. Miao,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[18]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[19]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[20]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[21]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[22]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[23]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[24]  Ferdinand Scholz,et al.  Transformations of carbon adsorbates on graphene substrates under extreme heat. , 2011, Nano letters.

[25]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[26]  Michael F. Crommie,et al.  Hydrocarbon lithography on graphene membranes , 2008 .

[27]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[28]  Cornelis W. Hagen,et al.  Direct fabrication of nanowires in an electron microscope , 2003 .