Vega: Non‐Linear FEM Deformable Object Simulator

This practice and experience paper describes a robust C++ implementation of several non‐linear solid three‐dimensional deformable object strategies commonly employed in computer graphics, named the Vega finite element method (FEM) simulation library. Deformable models supported include co‐rotational linear FEM elasticity, Saint–Venant Kirchhoff FEM model, mass–spring system and invertible FEM models: neo‐Hookean, Saint–Venant Kirchhoff and Mooney–Rivlin. We provide several timestepping schemes, including implicit Newmark and backward Euler integrators, and explicit central differences. The implementation of material models is separated from integration, which makes it possible to employ our code not only for simulation, but also for deformable object control and shape modelling. We extensively compare the different material models and timestepping schemes. We provide practical experience and insight gained while using our code in several computer animation and simulation research projects.

[1]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[2]  Steve Capell,et al.  Interactive skeleton-driven dynamic deformations , 2002, ACM Trans. Graph..

[3]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[4]  Markus H. Gross,et al.  Physically-based simulation of objects represented by surface meshes , 2004, Proceedings Computer Graphics International, 2004..

[5]  Paul R. Heyliger,et al.  Nonlinear continuum mechanics for finite element analysis (2nd edn). Javier Bonet and Richard D. Wood, Cambridge University Press, Cambridge, 2008. No. of pages: 318. ISBN: 978-0-521-83870-2 , 2008 .

[6]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[7]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[8]  Dinesh K. Pai,et al.  Eulerian solid simulation with contact , 2011, ACM Trans. Graph..

[9]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[10]  Motoji Yamamoto,et al.  An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements , 2009, ACM Trans. Graph..

[11]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[12]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[13]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[14]  A. Bower Applied Mechanics of Solids , 2009 .

[15]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[16]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[17]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[18]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[19]  W. L. Wood Practical Time-Stepping Schemes , 1990 .

[20]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[21]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[22]  J. Bialek Nonlinear Continuum Mechanics for Finite Element Analysis , 1998 .

[23]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[24]  Hujun Bao,et al.  An efficient large deformation method using domain decomposition , 2006, Comput. Graph..

[25]  Matthias Müller,et al.  Physically-based simulation of objects represented by surface meshes , 2004 .

[26]  Doug L. James,et al.  Real-time reduced large-deformation models and distributed contact for computer graphics and haptics , 2007 .

[27]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[28]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[29]  Jernej Barbic,et al.  Real-time large-deformation substructuring , 2011, ACM Trans. Graph..

[30]  Mohieddine Jelali,et al.  Physically Based Modelling , 2003 .

[31]  Mathieu Desbrun,et al.  Numerical coarsening of inhomogeneous elastic materials , 2009, SIGGRAPH 2009.

[32]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[33]  Mathieu Desbrun,et al.  Discrete geometric mechanics for variational time integrators , 2006, SIGGRAPH Courses.

[34]  Jernej Barbic,et al.  Squashing cubes: automating deformable model construction for graphics , 2004, SIGGRAPH '04.

[35]  A. Shabana Discrete and continuous systems , 1991 .

[36]  Hervé Delingette,et al.  Nonlinear and anisotropic elastic soft tissue models for medical simulation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[38]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.