Torch: A Search Engine for Trajectory Data

This paper presents a new trajectory search engine called Torch for querying road network trajectory data. Torch is able to efficiently process two types of typical queries (similarity search and Boolean search), and support a wide variety of trajectory similarity functions. Additionally, we propose a new similarity function LORS in Torch to measure the similarity in a more effective and efficient manner. Indexing and search in Torch works as follows. First, each raw vehicle trajectory is transformed to a set of road segments (edges) and a set of crossings (vertices) on the road network. Then a lightweight edge and vertex index called LEVI is built. Given a query, a filtering framework over LEVI is used to dynamically prune the trajectory search space based on the similarity measure imposed. Finally, the result set (ranked or Boolean) is returned. Extensive experiments on real trajectory datasets verify the effectiveness and efficiency of Torch.

[1]  Eamonn J. Keogh,et al.  Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping , 2012, KDD.

[2]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[3]  A. Smeaton,et al.  Retrieval of Similar Travel Routes Using GPS Tracklog Place Names , 2006, GIR.

[4]  Sang-Wook Kim,et al.  Trajectory clustering in road network environment , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[5]  Simon Washington,et al.  Shortest path and vehicle trajectory aided map-matching for low frequency GPS data , 2015 .

[6]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[7]  W. Bruce Croft,et al.  Search Engines - Information Retrieval in Practice , 2009 .

[8]  John Krumm,et al.  Hidden Markov map matching through noise and sparseness , 2009, GIS.

[9]  Shazia Wasim Sadiq,et al.  An Effectiveness Study on Trajectory Similarity Measures , 2013, ADC.

[10]  Feifei Li,et al.  Distributed Trajectory Similarity Search , 2017, Proc. VLDB Endow..

[11]  Heng Tao Shen,et al.  Searching trajectories by locations: an efficiency study , 2010, SIGMOD Conference.

[12]  Shazia Wasim Sadiq,et al.  SharkDB: An In-Memory Column-Oriented Trajectory Storage , 2014, CIKM.

[13]  Seung-won Hwang,et al.  Supporting Pattern-Matching Queries over Trajectories on Road Networks , 2011, IEEE Transactions on Knowledge and Data Engineering.

[14]  Eamonn J. Keogh,et al.  Experimental comparison of representation methods and distance measures for time series data , 2010, Data Mining and Knowledge Discovery.

[15]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[16]  Dimitrios Gunopulos,et al.  Indexing multi-dimensional time-series with support for multiple distance measures , 2003, KDD '03.

[17]  Christian S. Jensen,et al.  Efficient in-memory indexing of network-constrained trajectories , 2016, SIGSPATIAL/GIS.

[18]  Jignesh M. Patel,et al.  An efficient and accurate method for evaluating time series similarity , 2007, SIGMOD '07.

[19]  Ralf Hartmut Güting,et al.  Indexing the trajectories of moving objects in networks , 2004 .

[20]  J. Shane Culpepper,et al.  Efficient set intersection for inverted indexing , 2010, TOIS.

[21]  Howard R. Turtle,et al.  Query Evaluation: Strategies and Optimizations , 1995, Inf. Process. Manag..

[22]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[23]  Xing Xie,et al.  T-drive: driving directions based on taxi trajectories , 2010, GIS '10.

[24]  Sriram Raghavan,et al.  Indexing and matching trajectories under inconsistent sampling rates , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[25]  J. Shane Culpepper,et al.  Answering Top-k Exemplar Trajectory Queries , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[26]  Yannis Manolopoulos,et al.  Searching for similar trajectories in spatial networks , 2009, J. Syst. Softw..

[27]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[28]  Weiwei Sun,et al.  PRESS: A Novel Framework of Trajectory Compression in Road Networks , 2014, Proc. VLDB Endow..

[29]  Chengyang Zhang,et al.  Map-matching for low-sampling-rate GPS trajectories , 2009, GIS.

[30]  J. Shane Culpepper,et al.  Reverse $k$ Nearest Neighbor Search over Trajectories , 2017, IEEE Transactions on Knowledge and Data Engineering.

[31]  Yukihiro Tadokoro,et al.  SNT-index: Spatio-temporal index for vehicular trajectories on a road network based on substring matching , 2015, UrbanGIS@SIGSPATIAL.

[32]  Hugh E. Williams,et al.  Compression of inverted indexes For fast query evaluation , 2002, SIGIR '02.

[33]  Torsten Suel,et al.  Compressing term positions in web indexes , 2009, SIGIR.

[34]  Haim Kaplan,et al.  Computing the Discrete Fréchet Distance in Subquadratic Time , 2012, SIAM J. Comput..

[35]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[36]  Ralf Hartmut Güting,et al.  MWGen: A Mini World Generator , 2012, 2012 IEEE 13th International Conference on Mobile Data Management.

[37]  Yu Zheng,et al.  Managing massive trajectories on the cloud , 2016, SIGSPATIAL/GIS.

[38]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[39]  Samuel Madden,et al.  TrajStore: An adaptive storage system for very large trajectory data sets , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[40]  Eamonn Keogh Exact Indexing of Dynamic Time Warping , 2002, VLDB.

[41]  Hanan Samet,et al.  An Incremental Hausdorff Distance Calculation Algorithm , 2011, Proc. VLDB Endow..

[42]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[43]  Qiang Yang,et al.  Sampling Big Trajectory Data , 2015, CIKM.

[44]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[45]  Leonid Boytsov,et al.  Decoding billions of integers per second through vectorization , 2012, Softw. Pract. Exp..

[46]  J. Shane Culpepper,et al.  Phrase-Based Pattern Matching in Compressed Text , 2006, SPIRE.

[47]  Haim Kaplan,et al.  Computing the Discrete Fréchet Distance in Subquadratic Time , 2013, SODA.

[48]  Dominique Barth,et al.  Indexing in-network trajectory flows , 2011, The VLDB Journal.

[49]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS.

[50]  Giuseppe Ottaviano,et al.  Compressing Graphs and Indexes with Recursive Graph Bisection , 2016, KDD.

[51]  Rui Zhang,et al.  A Unified Processing Paradigm for Interactive Location-based Web Search , 2018, WSDM.

[52]  Alistair Moffat,et al.  Hybrid bitvector index compression , 2007 .