Simple Reasoning with Time-Dependent Propositions

Simple practical reasoning with propositions whose truth values depend on time is a matter of logical engineering. One needs an expressive language in which simple inferences are productive. Here's one approach, along with some algorithms for implementing it. We also consider reiied and non-reiied logics, and show that, contrary to a claim of Bacchus et. al., a reiied logic is more appropriate than its non-reiied equivalent, even for Boolean logic, when time references are interpreted as union-of-convex intervals.

[1]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[2]  Peter B. Ladkin,et al.  The Completeness of a Natural System for Reasoning with Time Intervals , 1987, IJCAI.

[3]  Roger D. Maddux,et al.  Relation Algebras for Reasoning about Time and Space , 1993, AMAST.

[4]  Peter van Beek,et al.  Reasoning About Qualitative Temporal Information , 1990, Artif. Intell..

[5]  Lenhart K. Schubert,et al.  Efficient Temporal Reasoning through Timegraphs , 1993, IJCAI.

[6]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[7]  C. L. Hamblin Instants and intervals. , 1971, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[8]  Kenneth D. Forbus,et al.  Building Problem Solvers , 1993 .

[9]  Lina Khatib,et al.  An interval-based temporal relational calculus for events with gaps , 1991, J. Exp. Theor. Artif. Intell..

[10]  Peter B. Ladkin,et al.  Models of Axioms for Time Intervals , 1987, AAAI.

[11]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[12]  Manolis Koubarakis,et al.  Complexity Results for First-Order Theories of Temporal Constraints , 1994, KR.

[13]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[14]  W. Quine Ontological Relativity and Other Essays , 1969 .

[15]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[16]  R. McKenzie,et al.  The logic of time representation , 1987 .

[17]  Peter B. Ladkin,et al.  Primitives and Units for Time Specification , 1986, AAAI.

[18]  J.-P. Haton,et al.  Assumption-based truth maintenance in presence of temporal assertions , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[19]  Peter B. Ladkin,et al.  Time Representation: A Taxonomy of Internal Relations , 1986, AAAI.

[20]  Peter B. Ladkin,et al.  On binary constraint networks , 1989 .

[21]  Monte Zweben,et al.  Learning to Improve Constraint-Based Scheduling , 1992, Artif. Intell..

[22]  Yoav Shoham,et al.  Temporal Logics in AI: Semantical and Ontological Considerations , 1987, Artif. Intell..

[23]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[24]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[25]  Alexander Reinefeld,et al.  A Symbolic Approach to Interval Constraint Problems , 1992, AISMC.

[26]  Gérard Ligozat,et al.  Weak Representations of Interval Algebras , 1990, AAAI.

[27]  Alexander Reinefeld,et al.  Fast algebraic methods for interval constraint problems , 1997, Annals of Mathematics and Artificial Intelligence.

[28]  M. Grace A logical point of view , 2003, British Dental Journal.

[29]  Patrick J. Hayes,et al.  Moments and points in an interval‐based temporal logic , 1989, Comput. Intell..

[30]  Josh Tenenbergy,et al.  A Non-reiied Temporal Logic , 1989 .

[31]  Lloyd Humberstone,et al.  Interval semantics for tense logic: Some remarks , 1979, Journal of Philosophical Logic.

[32]  Lina Khatib,et al.  Path Consistency in a Network of Non-Convex Intervals , 1993, IJCAI.

[33]  Peter B. Ladkin,et al.  Satisfying First-Order Constraints About Time Intervals , 1988, AAAI.