High-efficiency dual-mode luminescence of metal halide perovskite Cs3Bi2Cl9:Er3+ and its use in optical temperature measurement with high sensitivity

[1]  Zhigang Zang,et al.  High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication , 2022, eScience.

[2]  A. Meijerink,et al.  Efficient Broadband Near-Infrared Emission from Lead-Free Halide Double Perovskite Single Crystal. , 2022, Angewandte Chemie.

[3]  M. Sahu,et al.  Temperature-dependent photoluminescence and optical thermometry performance in Ca3Bi(PO4)3:Er3+ phosphors , 2022, Solid State Sciences.

[4]  Chenliang Li,et al.  Boosting Near-Infrared Luminescence of Lanthanide in Cs2AgBiCl6 Double Perovskites via Breakdown of the Local Site Symmetry. , 2022, Angewandte Chemie.

[5]  H. Song,et al.  Synergistic Effects of Multifunctional Lanthanides Doped CsPbBrCl2 Quantum Dots for Efficient and Stable MAPbI3 Perovskite Solar Cells , 2022, Advanced Functional Materials.

[6]  Hanqi Xu,et al.  Highly Sensitive Dual-Mode Optical Thermometry of Er3+/Yb3+ Codoped Lead-Free Double Perovskite Microcrystal. , 2022, The journal of physical chemistry letters.

[7]  Jialong Zhao,et al.  Stoichiometry‐Controlled Phase Engineering of Cesium Bismuth Halides and Reversible Structure Switch , 2022, Advanced Optical Materials.

[8]  Xiangling Tian,et al.  Splendid four-mode optical thermometry design based on the thermochromic Cs3GdGe3O9:Er3+ phosphors , 2022, Journal of Materials Chemistry C.

[9]  W. Dreher,et al.  Spatially resolved direct gas-phase thermometry in chemical reactors using NMR , 2021, Chemical Engineering Journal.

[10]  H. Zeng,et al.  Efficient, Stable, and Tunable Cold/Warm White Light from Lead‐Free Halide Double Perovskites Cs2Zr1‐xTexCl6 , 2021, Advanced Optical Materials.

[11]  Hai Guo,et al.  Improved photoluminescence and multi-mode optical thermometry of Er3+/Yb3+ co-doped (Ba,Sr)3Lu4O9 phosphors , 2021, Ceramics International.

[12]  Bingbing Tian,et al.  Efficient White Photoluminescence from Self-Trapped Excitons in Sb3+/Bi3+-Codoped Cs2NaInCl6 Double Perovskites with Tunable Dual-Emission , 2021, ACS Energy Letters.

[13]  Li Chen,et al.  Unraveling the Role of Crystallization Dynamics on Luminescence Characteristics of Perovskite Light‐Emitting Diodes , 2021, Laser & Photonics Reviews.

[14]  Yuansheng Wang,et al.  Stable CsPbBr3‐Glass Nanocomposite for Low‐Étendue Wide‐Color‐Gamut Laser‐Driven Projection Display , 2021, Laser & Photonics Reviews.

[15]  Y. Liu,et al.  Automatic light-adjusting electrochromic device powered by perovskite solar cell , 2021, Nature Communications.

[16]  Can Li,et al.  Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives , 2021 .

[17]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[18]  O. Bakr,et al.  Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors , 2021 .

[19]  K. Zhao,et al.  Centimeter‐Sized Single Crystals of Two‐Dimensional Hybrid Iodide Double Perovskite (4,4‐Difluoropiperidinium)4AgBiI8 for High‐Temperature Ferroelectricity and Efficient X‐Ray Detection , 2021, Advanced Functional Materials.

[20]  Yue Zhang,et al.  Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. , 2021, Chemical Society reviews.

[21]  Hai Guo,et al.  A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6:Er3+,Yb3+ phosphors , 2020, Chemical Engineering Journal.

[22]  Shuangyi Zhao,et al.  Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots , 2021, Opto-Electronic Advances.

[23]  Liping Chen,et al.  Na2YMg2(VO4)3:Er3+,Yb3+ phosphors: Up-conversion and optical thermometry , 2021 .

[24]  Theresa V Feddersen,et al.  Clinical Performance and Future Potential of Magnetic Resonance Thermometry in Hyperthermia , 2020, Cancers.

[25]  W. Qian,et al.  Halide perovskites: A dark horse for direct X‐ray imaging , 2020 .

[26]  Katsuhisa Tanaka,et al.  Aluminum for Near Infrared Plasmonics: Amplified Up‐Conversion Photoluminescence from Core–Shell Nanoparticles on Periodic Lattices , 2020, Advanced Optical Materials.

[27]  A. Rahimi‐Iman,et al.  Lead-Free Antimony Halide Perovskite with Heterovalent Mn2+ Doping. , 2020, Inorganic chemistry.

[28]  Chun-Hua Yan,et al.  Multimodal Luminescent Yb3+/Er3+/Bi3+‐Doped Perovskite Single Crystals for X‐ray Detection and Anti‐Counterfeiting , 2020, Advanced materials.

[29]  Jinsong Huang,et al.  Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays , 2020 .

[30]  M. Dramićanin Trends in luminescence thermometry , 2020 .

[31]  E. Kumacheva,et al.  Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots , 2020, Nature Nanotechnology.

[32]  Hai Guo,et al.  Highly sensitive optical thermometer based on FIR technique of transparent NaY2F7:Tm3+/Yb3+ glass ceramic , 2020, Journal of Alloys and Compounds.

[33]  Y. Liu,et al.  Sb3+ Dopant and Halogen Substitution Triggered Highly Efficient and Tunable Emission in Lead-Free Metal Halide Single Crystals , 2020 .

[34]  Angshuman Nag,et al.  CsPbBr3/ZnS Core/Shell Type Nanocrystals for Enhancing Luminescence Lifetime and Water Stability , 2020 .

[35]  Qionghai Dai,et al.  Broadband perovskite quantum dot spectrometer beyond human visual resolution , 2020, Light, science & applications.

[36]  M. Yin,et al.  Optical thermometry based on up-conversion luminescence behavior in BaGdF5:Er3+ glass ceramics , 2020 .

[37]  C. Shan,et al.  Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices. , 2020, Nanoscale.

[38]  Wei Feng,et al.  Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique , 2020, Nature Communications.

[39]  C. Duan,et al.  Multimodal temperature sensing using Zn2GeO4:Mn2+ phosphor as highly sensitive luminescent thermometer , 2019, Sensors and Actuators B: Chemical.

[40]  Fan Zhang,et al.  Tm3+ -Sensitized NIR-II Fluorescent Nanocrystals for In Vivo Information Storage and Decoding. , 2019, Angewandte Chemie.

[41]  Yu Cao,et al.  Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations , 2019, Nano Energy.

[42]  B. Richards,et al.  Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+,Yb3+ upconversion nanoparticles: a new choice for nanothermometry , 2019, Journal of Materials Chemistry C.

[43]  T. Plakhotnik,et al.  Ultrasensitive All-Optical Thermometry Using Nanodiamonds with a High Concentration of Silicon-Vacancy Centers and Multiparametric Data Analysis , 2019, ACS Photonics.

[44]  Zhigang Zang,et al.  Enhanced X-ray photon response in solution-synthesized CsPbBr3 nanoparticles wrapped by reduced graphene oxide , 2018, Solar Energy Materials and Solar Cells.

[45]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[46]  Emory M. Chan,et al.  Apparent self-heating of individual upconverting nanoparticle thermometers , 2018, Nature Communications.

[47]  Jianqing Jiang,et al.  Mechanistic Investigations on the Dramatic Thermally Induced Luminescence Enhancement in Upconversion Nanocrystals , 2018, The Journal of Physical Chemistry C.

[48]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[49]  Q. Tang,et al.  Lanthanide Ions Doped CsPbBr3 Halides for HTM‐Free 10.14%‐Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open‐Circuit Voltage of 1.594 V , 2018, Advanced Energy Materials.

[50]  Wenguang Tu,et al.  Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3 N4 for Enhanced Photocatalytic CO2 Reduction , 2018, Angewandte Chemie.

[51]  Liping Chen,et al.  Transparent Sr0.84Lu0.16F2.16: Yb3+, Er3+ glass ceramics: Elaboration, structure, up-conversion properties and applications , 2018, Journal of the European Ceramic Society.

[52]  Z. Jiahua,et al.  Er3+/Yb3+ codoped phosphor Ba3Y4O9 with intense red upconversion emission and optical temperature sensing behavior , 2018 .

[53]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[54]  Liping Chen,et al.  Wide-range thermometry based on green up-conversion of Yb 3+ /Er 3+ co-doped KLu 2 F 7 transparent bulk oxyfluoride glass ceramics , 2018 .

[55]  Guangda Niu,et al.  All‐Inorganic Bismuth‐Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability , 2018 .

[56]  Z. Hao,et al.  Ln3+ (Er3+, Tm3+ and Ho3+)-doped NaYb(MoO4)2 upconversion phosphors as wide range temperature sensors with high sensitivity , 2017 .

[57]  Hongwei Song,et al.  Cerium and Ytterbium Codoped Halide Perovskite Quantum Dots: A Novel and Efficient Downconverter for Improving the Performance of Silicon Solar Cells , 2017, Advanced materials.

[58]  I. R. Martín,et al.  Synthesis and characterization of SrSnO3 doped with Er3+ for up-conversion luminescence temperature sensors , 2017 .

[59]  Bin Yang,et al.  Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. , 2017, Angewandte Chemie.

[60]  Wei Xu,et al.  Ln3+-Sensitized Mn4+ near-infrared upconverting luminescence and dual-modal temperature sensing , 2017 .

[61]  Denghui Xu,et al.  Tunability of green–red up-conversion emission of co-doped Ca3WO6:Yb3+/Er3+ powders , 2017, Journal of Materials Science: Materials in Electronics.

[62]  Baojiu Chen,et al.  A new molybdate host material: Synthesis, upconversion, temperature quenching and sensing properties , 2016 .

[63]  C. Duan,et al.  Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion , 2016 .

[64]  Ayan A. Zhumekenov,et al.  Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids , 2016 .

[65]  J. Yu,et al.  Upconversion emission, cathodoluminescence and temperature sensing behaviors of Yb3+ ions sensitized NaY(WO4)2:Er3+ phosphors , 2016 .

[66]  Liping Chen,et al.  Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics , 2016 .

[67]  Hai Guo,et al.  Optical Thermometry Based on Up‐Conversion Luminescence Behavior of Er3+ ‐Doped Transparent Sr2YbF7 Glass‐Ceramics , 2015 .

[68]  Yang Shao-Horn,et al.  Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution , 2013, Nature Communications.

[69]  Xitao Liu,et al.  Chiral Lead‐Free Hybrid Perovskites for Self‐Powered Circularly Polarized Light Detection , 2022, Angewandte Chemie.