Isotope selective ionization by optimal control using shaped femtosecond laser pulses.

We report on selective optimization of different isotopes in an ionization process by means of spectrally broad shaped fs-laser pulses. This is demonstrated for (39,39)K2 and (39,41)K2 by applying evolution strategies in a feedback loop, whereby a surprisingly high enhancement of one isotope versus the other and vice versa is achieved (total factor approximately 140). Information about the dynamics on the involved vibrational states is extracted from the optimal pulse shapes, which provides a new spectroscopical approach of yielding distinct frequency pattern on fs-time scales. The method should, in principle, be feasible for all molecules.

[1]  Schreiber,et al.  Femtosecond wave-packet propagation in spin-orbit-coupled electronic states of 39,39K2 and 39,41K2. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[2]  L. Wöste,et al.  Fractional revivals of vibrational wave packets in the NaK A1∑+ state , 1997 .

[3]  Oscar E. Martínez,et al.  3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region , 1987 .

[4]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[5]  S. Rice,et al.  New ideas for guiding the evolution of a quantum system. , 1992, Science.

[6]  R. F. Barrow,et al.  Interactions between the A(1) 1Σ+u and b(1) 3Πu states of K2 , 1987 .

[7]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[8]  T. Hornung,et al.  Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain , 2000 .

[9]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[10]  L. González,et al.  Deciphering the Reaction Dynamics Underlying Optimal Control Laser Fields , 2003, Science.

[11]  Villeneuve,et al.  Wave Packet Isotope Separation. , 1996, Physical review letters.

[12]  H Rabitz,et al.  Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses , 2001, Science.

[13]  P. T. Greenland,et al.  Laser isotope separation , 1990 .

[14]  Keith A. Nelson,et al.  Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators , 1995 .

[15]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[16]  R. Vivie-Riedle,et al.  FEMTOSECOND STUDY OF MULTIPHOTON IONIZATION PROCESSES IN K2 AT MODERATE LASER INTENSITIES , 1995 .

[17]  T. Leisner,et al.  Feedback optimization of shaped femtosecond laser pulses for controlling the wavepacket dynamics and reactivity of mixed alkaline clusters , 2001 .

[18]  Andrew M. Weiner,et al.  Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator , 1992 .

[19]  Gerber,et al.  Femtosecond time-resolved molecular multiphoton ionization: The Na2 system. , 1991, Physical review letters.

[20]  I. Averbukh,et al.  Optimal control of wave-packet isotope separation , 2001 .

[21]  Vladislav V. Yakovlev,et al.  Feedback quantum control of molecular electronic population transfer , 1997 .

[22]  J. A. Coxon,et al.  CW all-optical triple-resonance spectroscopy of K2: Deperturbation analysis of the A1Σu+ (v ≤ 12) and b3Πu (13 ≤ v ≤ 24) states , 1992 .