Recent computational methods for high frequency waves in heterogeneous media

In this note, we review our recent results on the Eulerian computation of high frequency waves in heterogeneous media. We cover three recent methods: the moment method, the level set method, and the computational methods for interface problems in high frequency waves. These approaches are all based on high frequency asymptotic limits.

[1]  Shi Jin,et al.  A Hamiltonian-Preserving Scheme for the Liouville Equation of Geometrical Optics with Partial Transmissions and Reflections , 2006, SIAM J. Numer. Anal..

[2]  Shi Jin,et al.  Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction , 2008, J. Comput. Phys..

[3]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[4]  Laurent Gosse,et al.  TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION , 2003 .

[5]  L. Ambrosio Transport equation and Cauchy problem for BV vector fields , 2004 .

[6]  Stanley Osher,et al.  A level set method for the computation of multi-valued solutions to quasi-linear hyperbolic PDE's and Hamilton-Jacobi equations , 2003 .

[7]  Guillaume Bal,et al.  Transport theory for acoustic waves with reflection and transmission at interfaces , 1999 .

[8]  Luc Miller,et al.  Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary , 2000 .

[9]  Björn Engquist,et al.  High-Frequency Wave Propagation by the Segment Projection Method , 2002 .

[10]  A. Mayo The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions , 1984 .

[11]  Shi Jin,et al.  Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .

[12]  Shi Jin,et al.  Computation of Interface Reflection and Regular or Diffuse Transmission of the Planar Symmetric Radiative Transfer Equation with Isotropic Scattering and Its Diffusion Limit , 2008, SIAM J. Sci. Comput..

[13]  Hailiang Liu,et al.  A field-space-based level set method for computing multi-valued solutions to 1D Euler-Poisson equations , 2007, J. Comput. Phys..

[14]  Stanley Osher,et al.  Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation , 2005 .

[15]  B. Engquist,et al.  Computational high frequency wave propagation , 2003, Acta Numerica.

[16]  Shi Jin,et al.  The l1-Error Estimates for a Hamiltonian-Preserving Scheme for the Liouville Equation with Piecewise Constant Potentials , 2008, SIAM J. Numer. Anal..

[17]  Shi Jin,et al.  A semiclassical transport model for two-dimensional thin quantum barriers , 2007, J. Comput. Phys..

[18]  B. Engquist,et al.  Multi-phase computations in geometrical optics , 1996 .

[19]  Shi Jin,et al.  A HAMILTONIAN-PRESERVING SCHEME FOR HIGH FREQUENCY ELASTIC WAVES IN HETEROGENEOUS MEDIA , 2006 .

[20]  Shi Jin,et al.  Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds , 2006, J. Comput. Phys..

[21]  L. Gosse Using K-Branch Entropy Solutions for Multivalued Geometric Optics Computations , 2002 .

[22]  Xu Yang,et al.  THE VLASOV–POISSON EQUATIONS AS THE SEMICLASSICAL LIMIT OF THE SCHRÖDINGER–POISSON EQUATIONS: A NUMERICAL STUDY , 2008 .

[23]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[24]  Shi Jin,et al.  A Semiclassical Transport Model for Thin Quantum Barriers , 2006, Multiscale Model. Simul..

[25]  Stanley Osher,et al.  Geometric Optics in a Phase-Space-Based Level Set and Eulerian Framework , 2002 .

[26]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[27]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[28]  P. Hartman Ordinary Differential Equations , 1965 .

[29]  Pierre Degond,et al.  Coupling one-dimensional time-dependent classical and quantum transport models , 2002 .

[30]  J. Sethian,et al.  Fast-phase space computation of multiple arrivals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[32]  L. Hörmander,et al.  Fourier integral operators. II , 1972 .

[33]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[34]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[35]  Shi Jin,et al.  Numerical Approximations of Pressureless and Isothermal Gas Dynamics , 2003, SIAM J. Numer. Anal..

[36]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[37]  O. Runborg Mathematical Models and Numerical Methods for High Frequency Waves , 2007 .

[38]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[39]  Stanley Osher,et al.  Numerical solution of the high frequency asymptotic expansion for the scalar wave equation , 1995 .

[40]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[41]  Christof Sparber,et al.  Wigner functions versus WKB‐methods in multivalued geometrical optics , 2001 .

[42]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[43]  Yoshikazu Giga,et al.  A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations , 2003, Math. Comput..

[44]  Xin,et al.  CONVERGENCE OF AN IMMERSED INTERFACE UPWIND SCHEME FOR LINEAR ADVECTION EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS I: L 1 -ERROR ESTIMATES * , 2008 .

[45]  Lexing Ying,et al.  The phase flow method , 2006, J. Comput. Phys..

[46]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[47]  Xin Wen,et al.  Hamiltonian-Preserving Schemes for the Liouville Equation with Discontinuous Potentials , 2005 .

[48]  Stanley Osher,et al.  Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems , 2005 .

[49]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[50]  John H Booske,et al.  Eulerian method for computing multivalued solutions of the Euler-Poisson equations and applications to wave breaking in klystrons. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.