Problems and Opportunities in Context−Based Personalization

In a world of global networking, the increasing amount of heterogeneous information, available through a variety of channels, has made it difficult for users to find the information they need in the current situation, at the right level of detail. This is true not only when accessing information from mobile devices, characterized by limited – although growing – resources and by high connection costs, but also when using powerful systems, since the amount of “out-of-context” answers to a given user request may be overwhelming. The knowledge of the context in which the data are going to be used can support the process of focussing on currently useful, personalized information. The activity needed for contextaware information personalization provides material for stimulating research, briefly illustrated in this paper.

[1]  Meir M. Lehman,et al.  Software's future: managing evolution , 1998, IEEE Software.

[2]  Giorgio Orsi,et al.  Context based querying of dynamic and heterogeneous information sources , 2010 .

[3]  Carlo Curino,et al.  Context information for knowledge reshaping , 2009, Int. J. Web Eng. Technol..

[4]  Matthew O. Adigun,et al.  Mining Context-based User Preferences for m-Services Applications , 2007 .

[5]  Giorgio Orsi,et al.  Context Modelling and Context-Aware Querying - (Can Datalog Be of Help?) , 2010, Datalog.

[6]  Carlo Curino,et al.  A data-oriented survey of context models , 2007, SGMD.

[7]  Alexander Tuzhilin,et al.  Using Context to Improve Predictive Modeling of Customers in Personalization Applications , 2008, IEEE Transactions on Knowledge and Data Engineering.

[8]  Giorgio Orsi,et al.  Context Modeling and Context Awareness: steps forward in the Context-ADDICT project , 2011, IEEE Data Eng. Bull..

[9]  Alessandra Mileo,et al.  Support for Context-aware Monitoring in Home Healthcare , 2009, Intelligent Environments.

[10]  Evaggelia Pitoura,et al.  Adding Context to Preferences , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[11]  Georg Gottlob,et al.  The Lixto data extraction project: back and forth between theory and practice , 2004, PODS.

[12]  Michael Beigl,et al.  Beyond context-awareness: context prediction in an industrial application , 2010, UbiComp '10 Adjunct.

[13]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[14]  Patrick Brézillon,et al.  Using Knowledge in Its Context: Report on the IJCAI-93 Workshop , 1995, AI Mag..

[15]  Letizia Tanca,et al.  Towards autonomic pervasive systems: the PerLa context language , 2011 .

[16]  Mohamed F. Mokbel,et al.  CareDB: A context and preference-aware location-based database system , 2010, 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010).

[17]  Letizia Tanca,et al.  The ESTEEM platform: enabling P2P semantic collaboration through emerging collective knowledge , 2011, Journal of Intelligent Information Systems.

[18]  Letizia Tanca,et al.  A methodology for preference-based personalization of contextual data , 2009, EDBT '09.

[19]  Lei Jiang,et al.  Data Quality Is Context Dependent , 2010, BIRTE.

[20]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[21]  Yannis Papakonstantinou,et al.  Incremental Validation of XML Documents , 2003, ICDT.

[22]  F. Schreiber,et al.  PerLa: A Language and Middleware Architecture for Data Management and Integration in Pervasive Information Systems , 2012, IEEE Transactions on Software Engineering.

[23]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[24]  Matthias Baldauf,et al.  A survey on context-aware systems , 2007, Int. J. Ad Hoc Ubiquitous Comput..

[25]  Letizia Tanca,et al.  Context Schema Evolution in Context-Aware Data Management , 2011, ER.

[26]  Claudia Linnhoff-Popien,et al.  A Context Modeling Survey , 2004 .

[27]  Erhard Rahm,et al.  Schema Matching and Mapping , 2013, Schema Matching and Mapping.