Laboratory measurements of anhydrous minerals mixed with hyperfine hydrated minerals to support interpretation of infrared reflectance observations of planetary surfaces

[1]  O. Forni,et al.  Reflectance of Jezero Crater Floor: 2. Mineralogical Interpretation , 2022, Journal of Geophysical Research: Planets.

[2]  J. Brucato,et al.  Phobos and deimos surface composition: Search for spectroscopic analogs , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  A. Fitzsimmons,et al.  The ESA Hera Mission: Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos , 2022, The Planetary Science Journal.

[4]  D. Loizeau,et al.  ROMA: A Database of Rock Reflectance Spectra for Martian In Situ Exploration , 2021, Earth and space science.

[5]  A. Araya,et al.  Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets , 2021, Earth, Planets and Space.

[6]  D. Rothery,et al.  Mars: new insights and unresolved questions , 2021, International Journal of Astrobiology.

[7]  O. Forni,et al.  The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission , 2021, Icarus.

[8]  Feng Wang,et al.  Near-Infrared Spectroscopy Study of Serpentine Minerals and Assignment of the OH Group , 2021, Crystals.

[9]  A. Doressoundiram,et al.  MIRS: an imaging spectrometer for the MMX mission , 2021, Optical Engineering + Applications.

[10]  C. Kiss,et al.  Serpentinization in the Thermal Evolution of Icy Kuiper Belt Objects in the Early Solar System , 2021, The Planetary Science Journal.

[11]  D. Reuter,et al.  Hydrogen abundance estimation and distribution on (101955) Bennu , 2021, Icarus.

[12]  J. Brucato,et al.  Temperature dependent mid-infrared (5–25 μm) reflectance spectroscopy of carbonaceous meteorites and minerals: Implication for remote sensing in Solar System exploration , 2021 .

[13]  R. Wiens,et al.  Mars 2020 Mission Overview , 2020, Space Science Reviews.

[14]  E. Scott Iron Meteorites: Composition, Age, and Origin , 2020 .

[15]  J. Mustard,et al.  Cross‐Over Infrared Spectroscopy: A New Tool for the Remote Determination of Olivine Composition , 2020, Geophysical Research Letters.

[16]  A. Hofmeister,et al.  Infrared spectra of pyroxenes (crystalline chain silicates) at room temperature , 2020, 2007.13557.

[17]  F. Cipriani,et al.  Mid-infrared spectroscopic investigation of meteorites and perspectives for thermal infrared observations at the binary asteroid Didymos , 2020, Planetary and Space Science.

[18]  C. Viviano,et al.  Olivine-Carbonate Mineralogy of the Jezero Crater Region , 2019, Journal of geophysical research. Planets.

[19]  S. Matsuura,et al.  Multivariable statistical analysis of spectrophotometry and spectra of (162173) Ryugu as observed by JAXA Hayabusa2 mission , 2019, Astronomy & Astrophysics.

[20]  M. Yamada,et al.  The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.

[21]  M. K. Crombie,et al.  Evidence for widespread hydrated minerals on asteroid (101955) Bennu , 2019, Nature Astronomy.

[22]  E. Cloutis,et al.  Spectral Reflectance of Powder Coatings on Carbonaceous Chondrite Slabs: Implications for Asteroid Regolith Observations , 2018, Journal of Geophysical Research: Planets.

[23]  A. Steele,et al.  UV irradiation of biomarkers adsorbed on minerals under Martian-like conditions: Hints for life detection on Mars , 2018, Icarus.

[24]  Luther W. Beegle,et al.  The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life , 2018 .

[25]  A. Steele,et al.  Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources , 2016 .

[26]  S. Haggerty Spinel in planetary systems , 2016 .

[27]  C. Chapman,et al.  The Compositional Structure of the Asteroid Belt , 2015, 1506.04805.

[28]  Jean-Pierre Bibring,et al.  Widespread surface weathering on early Mars: A case for a warmer and wetter climate , 2015 .

[29]  Yangting Lin,et al.  NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: Hydrogen isotope evidence for recent past underground hydrothermal activity on Mars , 2014 .

[30]  A. Brown Spectral bluing induced by small particles under the Mie and Rayleigh regimes , 2014 .

[31]  John F. Mustard,et al.  Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars , 2014 .

[32]  Edward A. Cloutis,et al.  Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra , 2014 .

[33]  Rogier Braakman,et al.  Mapping metabolism onto the prebiotic organic chemistry of hydrothermal vents , 2013, Proceedings of the National Academy of Sciences.

[34]  A. Steele,et al.  Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.

[35]  Paul Mann,et al.  Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites , 2012 .

[36]  Q. Xia,et al.  OH in natural orthopyroxene: an in situ FTIR investigation at varying temperatures , 2012, Physics and Chemistry of Minerals.

[37]  R. Clark,et al.  Evidence for Low-Grade Metamorphism, Hydrothermal Alteration, and Diagenesis on Mars from Phyllosilicate Mineral Assemblages , 2011 .

[38]  H. McSween,et al.  Distribution and variation of plagioclase compositions on Mars , 2010 .

[39]  E. Shock,et al.  The Potential for Abiotic Organic Synthesis and Biosynthesis at Seafloor Hydrothermal Systems , 2010 .

[40]  Simon J. Hook,et al.  HYDROTHERMAL FORMATION OF CLAY-CARBONATE ALTERATION ASSEMBLAGES IN THE , 2010, 1402.1150.

[41]  S. Murchie,et al.  Geologic setting of serpentine deposits on Mars , 2010 .

[42]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[43]  B. Schmitt,et al.  Strength of the H2O near-infrared absorption bands in hydrated minerals: Effects of particle size and correlation with albedo , 2008 .

[44]  Robert Jedicke,et al.  The Distribution of Basaltic Asteroids in the Main Belt , 2008, 0807.3951.

[45]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[46]  D. Ming,et al.  Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .

[47]  H. Paulick,et al.  Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) , 2006 .

[48]  A. Hofmeister,et al.  Overtones of silicate and aluminate minerals and the 5-8 μm ice bands of deeply embedded objects , 2005 .

[49]  J. Gee,et al.  Spinel in Martian meteorite SaU 008: implications for Martian magnetism , 2005 .

[50]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[51]  Everett L. Shock,et al.  Formation of jarosite‐bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars , 2004 .

[52]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.

[53]  E. Cloutis Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions , 2002 .

[54]  Jeffrey R. Johnson,et al.  Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars , 2002 .

[55]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[56]  C. Engrand,et al.  Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth , 2000 .

[57]  P. M. Chu,et al.  The NIST Quantitative Infrared Database , 1999, Journal of Research of the National Institute of Standards and Technology.

[58]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[59]  John W. Salisbury,et al.  Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites , 1991 .

[60]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[61]  John W. Salisbury,et al.  Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces , 1989 .

[62]  M. Gaffey The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials , 1986 .

[63]  R. Huguenin The silicate component of Martian dust , 1985 .

[64]  J. B. Adams,et al.  Plagioclase feldspars - Visible and near infrared diffuse reflectance spectra as applied to remote sensing , 1978 .

[65]  J. B. Moody Serpentinization: a review , 1976 .

[66]  K. Omori Analysis of the Infrared Absorption Spectrum of Diopside , 1971 .

[67]  K. Iiishi,et al.  Isomorphous substitution and infrared and far infrared spectra of the feldspar group. , 1971 .

[68]  Toshio Kato,et al.  The force field of K feldspar , 1971 .

[69]  R. Burns Site preferences of transition metal ions in silicate crystal structures , 1970 .

[70]  James E. Conel,et al.  Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of Spectral emission from condensed particulate mediums , 1969 .

[71]  B. Mason Pyroxenes in meteorites , 1968 .