Using low-cost disposable immunosensor based on flexible PET screen-printed electrode modified with carbon black and gold nanoparticles for sensitive detection of SARS-CoV-2

[1]  S. Graham,et al.  Evaluation of electropolymerized molecularly imprinted polymers (E-MIPs) on disposable electrodes for detection of SARS-CoV-2 in saliva , 2022, Analytica Chimica Acta.

[2]  J. Orozco,et al.  Peptide-based simple detection of SARS-CoV-2 with electrochemical readout , 2022, Analytica Chimica Acta.

[3]  J. Orozco,et al.  SARS-CoV-2 electrochemical immunosensor based on the spike-ACE2 complex , 2022, Analytica Chimica Acta.

[4]  E. Carrilho,et al.  Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2 , 2022, Analytical and Bioanalytical Chemistry.

[5]  P. Hoskisson,et al.  SARS-CoV-2 Aptasensors Based on Electrochemical Impedance Spectroscopy and Low-Cost Gold Electrode Substrates , 2021, Analytical chemistry.

[6]  Ikbel Hadj Hassine Covid‐19 vaccines and variants of concern: A review , 2021, Reviews in medical virology.

[7]  C. de la Fuente-Nunez,et al.  Low-Cost Optodiagnostic for Minute-Time Scale Detection of SARS-CoV-2 , 2021, ACS nano.

[8]  W. Coltro,et al.  Electrochemical determination of melatonin using disposable self-adhesive inked paper electrode , 2021 .

[9]  M. Pumera,et al.  3D-Printed COVID-19 immunosensors with electronic readout , 2021, Chemical Engineering Journal.

[10]  Turki Al Hagbani,et al.  An overview of SARS-COV-2 epidemiology, mutant variants, vaccines, and management strategies , 2021, Journal of Infection and Public Health.

[11]  C. de la Fuente-Nunez,et al.  Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes , 2021, Proceedings of the National Academy of Sciences.

[12]  C. Hartard,et al.  Anti-SARS-CoV-2 Vaccines and Monoclonal Antibodies Facing Viral Variants , 2021, Viruses.

[13]  C. Knapp,et al.  Electrochemical sensing of SARS-CoV-2 amplicons with PCB electrodes , 2021 .

[14]  C. de la Fuente-Nunez,et al.  Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care , 2021, Matter.

[15]  D. Zhu,et al.  Prospects and challenges of using electrochemical immunosensors as an alternative detection method for SARS-CoV-2 wastewater-based epidemiology , 2021, Science of The Total Environment.

[16]  A. Öpik,et al.  Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen , 2021, Biosensors and Bioelectronics.

[17]  K. Skowron,et al.  SARS-CoV-2 in the environment—Non-droplet spreading routes , 2021, Science of The Total Environment.

[18]  I. Brandslund,et al.  Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor , 2021, Sensors.

[19]  D. Moscone,et al.  Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva , 2020, Biosensors and Bioelectronics.

[20]  D. Hall,et al.  Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer , 2020, Biosensors and Bioelectronics.

[21]  Andres Jaramillo-Botero,et al.  SenSARS: A Low-Cost Portable Electrochemical System for Ultra-Sensitive, Near Real-Time, Diagnostics of SARS-CoV-2 Infections , 2021, IEEE Transactions on Instrumentation and Measurement.

[22]  M. Zourob,et al.  Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2. , 2020, Analytical chemistry.

[23]  Jinghua Yan,et al.  Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen , 2020, Biosensors and Bioelectronics.

[24]  Fenglin Liu,et al.  Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone , 2020, Sensors and Actuators B: Chemical.

[25]  R. Haque,et al.  Integrated control of COVID-19 in resource-poor countries , 2020, International Journal of Infectious Diseases.

[26]  Sergio Bolletti Censi,et al.  Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs , 2020, medRxiv.

[27]  Prasenjit Maity,et al.  COVID-19 outbreak: Migration, effects on society, global environment and prevention , 2020, Science of The Total Environment.

[28]  Daeui Park,et al.  Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor , 2020, ACS nano.

[29]  Sangsoo Park,et al.  Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis , 2020, Biomaterials Research.

[30]  J. R. Camargo,et al.  Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. , 2020, Talanta.

[31]  A. Amine,et al.  Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. , 2020, Biosensors & bioelectronics.

[32]  Z. Memish,et al.  The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China , 2020, International Journal of Infectious Diseases.

[33]  J. R. Camargo,et al.  Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink , 2019, Journal of Electroanalytical Chemistry.

[34]  M. Yusoff,et al.  Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. , 2018, Biosensors & bioelectronics.

[35]  M. Bertotti,et al.  Nanoporous Gold Surface: An Efficient Platform for Hydrogen Evolution Reaction at Very Low Overpotential , 2017 .

[36]  N. M. Julkapli,et al.  Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor , 2016, Materials.

[37]  F. Scholz,et al.  Identification of low-index crystal planes of polycrystalline gold on the basis of electrochemical oxide layer formation , 2016, Journal of Solid State Electrochemistry.

[38]  Jing Hong,et al.  Statistical method for determining and comparing limits of detection of bioassays. , 2015, Analytical chemistry.

[39]  A. O'Mullane,et al.  From single crystal surfaces to single atoms: investigating active sites in electrocatalysis. , 2014, Nanoscale.

[40]  M. Björklund,et al.  Improved Artificial Saliva for Studying the Cariogenic Effect of Carbohydrates , 2011, Current Microbiology.

[41]  Zhang Zu-xun,et al.  Theory and application of cyclic voltammetry for measurement of fast electrode kinetics at microdisk electrode , 2010 .

[42]  P. Gottschalk,et al.  The five-parameter logistic: a characterization and comparison with the four-parameter logistic. , 2005, Analytical biochemistry.

[43]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .