A method was developed for the determination of putative lectin activities of cytokines. It involved the immunoblotting measurement of the quantity of these cytokines unbound to a series of different immobilized glycoconjugates and displacement of the bound cytokines with oligosaccharides of known structures. This method allows demonstrating that the following interleukins specifically recognize different oligosaccharide structures in a calcium-independent mechanism: interleukin-1alpha binds to the biantennary disialylated N-glycan completed with two Neu5Acalpha2-3 residues; interleukin-1beta to a GM4 sialylated glycolipid Neu5Acalpha2-3Galbeta1-Cer having very long and unusual long-chain bases; interleukin-4 to the 1,7 intramolecular lactone of N-acetyl-neuraminic acid; interleukin-6 to compounds having N-linked and O-linked HNK-1-like epitopes; and interleukin-7 to the sialyl-Tn antigen. Because the glycan ligands are rare structures in human circulating cells, it is suggested that such activities could be essential for providing specific signaling systems to cells having both the receptors and the oligosaccharide ligands of the interleukin at their cell surface.