Entropy optimization in cubic autocatalysis chemical reactive flow of Williamson fluid subjected to viscous dissipation and uniform magnetic field

This research elaborates magnetohydrodynamics (MHD) impact on non-Newtonian (Williamson) fluid flow by stretchable rotating disks. Both disks are rotating with different angular velocities and different stretching rates. Viscous dissipation aspect is considered for energy expression formulation. Entropy generation analysis is described via implementation of thermodynamic second law. Chemical processes (heterogeneous and homogeneous) subjected to entropy generation are introduced first time in literature. Boundary-layer approach is employed for modeling. Apposite variables are introduced for non-dimensionalization of governing systems. Homotopy procedure yields convergence of solutions subjected to computations of highly nonlinear expressions. The significant characteristics of sundry factors against thermal, velocity and solutal fields are described graphically. Besides, tabular results are addressed for engineering quantities (skin-friction coefficient, Nusselt number). The outcomes certify an increment in temperature distribution for Weissenberg (We) and Eckert (Ec) numbers.摘要阐述了可伸缩的旋转盘对非牛顿磁流体动力学 (MHD) 的影响。两个圆盘以不同的角速度和不同 的伸缩率旋转。在能量表达式中考虑黏性耗散, 利用热力学第二定律分析熵的生成, 文中首次介绍了 熵产生的化学过程(多相和均相)。采用边界层方法建立模型, 引入变量对控制系统进行无量纲化。通 过高度非线性表达式的计算, 得到同伦过程解的收敛性。用图解法描述了各种因素对热场、速度场和 溶质场的影响特征。此外, 以表格形式给出了工程质量包括表面摩擦系数、 Nusselt 数的计算结果。结 果证实了因 Weissenberg(We) (韦斯森伯格)和 Eckert(Ec) (埃克特)数而导致的温度梯度分布的增加。

[1]  Chunhui Zhao,et al.  A background refinement method based on local density for hyperspectral anomaly detection , 2018 .

[2]  T. Hayat,et al.  Endoscopy and homogeneous-heterogeneous reactions in MHD radiative peristaltic activity of Ree-Eyring fluid , 2018 .

[3]  A. Alsaedi,et al.  Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction , 2018, International Journal of Heat and Mass Transfer.

[4]  Ahmed Alsaedi,et al.  Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition , 2016 .

[5]  Tasawar Hayat,et al.  Salient aspects of entropy generation optimization in mixed convection nanomaterial flow , 2018, International Journal of Heat and Mass Transfer.

[6]  Mohammad Mehdi Rashidi,et al.  Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties , 2014 .

[7]  Tasawar Hayat,et al.  MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer , 2016 .

[8]  A. Bejan A Study of Entropy Generation in Fundamental Convective Heat Transfer , 1979 .

[9]  Kai-Long Hsiao,et al.  Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects , 2017 .

[10]  Ahmed Alsaedi,et al.  A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating , 2017 .

[11]  Kai-Long Hsiao,et al.  Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature , 2017 .

[12]  Tasawar Hayat,et al.  Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface , 2016 .

[13]  Tasawar Hayat,et al.  Entropy generation optimization and unsteady squeezing flow of viscous fluid with five different shapes of nanoparticles , 2018, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[14]  Kai-Long Hsiao,et al.  Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet , 2016 .

[15]  M. Ijaz Khan,et al.  Entropy analysis for comparative study of effective Prandtl number and without effective Prandtl number via γAl2O3-H2O and γAl2O3-C2H6O2 nanoparticles , 2018, Journal of Molecular Liquids.

[16]  R. Ellahi,et al.  The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection , 2016, Applied Nanoscience.

[17]  T. Hayat,et al.  Flow of Casson nanofluid with viscous dissipation and convective conditions: A mathematical model , 2015 .

[18]  R. V. Williamson The Flow of Pseudoplastic Materials , 1929 .

[19]  A. Alsaedi,et al.  A theoretical analysis of SWCNT–MWCNT and H2O nanofluids considering Darcy–Forchheimer relation , 2018, Applied Nanoscience.

[20]  T. Hayat,et al.  Recent progresses about statistical declaration and probable error for surface drag force of chemically reactive squeezing flow with temperature dependent thermal conductivity , 2017 .

[21]  Tasawar Hayat,et al.  Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface , 2017 .

[22]  T. Hayat,et al.  Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk , 2018, Physica B: Condensed Matter.

[23]  M. Farooq,et al.  Melting heat transfer with radiative effects and homogeneous–heterogeneous reaction in thermally stratified stagnation flow embedded in porous medium , 2018, Journal of Central South University.

[24]  Tasawar Hayat,et al.  Chemically reactive flow of Maxwell liquid due to variable thicked surface , 2017 .

[25]  M. Irfan,et al.  Modeling and simulation for 3D magneto Eyring-Powell nanomaterial subject to nonlinear thermal radiation and convective heating , 2017 .

[26]  Ahmed Alsaedi,et al.  Magnetohydrodynamic stagnation point flow of third-grade liquid toward variable sheet thickness , 2017, Neural Computing and Applications.

[27]  Tasawar Hayat,et al.  Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model , 2017 .

[28]  O. Makinde,et al.  Entropy generation analysis in transient variable viscosity couette flow between two concentric pipes , 2014 .

[29]  T. Hayat,et al.  Effects of homogeneous-heterogeneous reactions in flow of Powell-Eyring fluid , 2015 .

[30]  R. Ellahi,et al.  Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach , 2016 .

[31]  Saman Rashidi,et al.  Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat , 2017 .

[32]  Mair Khan,et al.  Interaction between chemical species and generalized Fourier’s law on 3D flow of Carreau fluid with variable thermal conductivity and heat sink/source: A numerical approach , 2018, Results in Physics.

[33]  Ahmed Alsaedi,et al.  Mixed convection peristalsis of carbon nanotubes with thermal radiation and entropy generation , 2018 .

[34]  Tasawar Hayat,et al.  Importance of Darcy-Forchheimer relation in chemically reactive radiating flow towards convectively heated surface , 2017 .

[35]  Saman Rashidi,et al.  Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still , 2018 .

[36]  Muhammad Ijaz Khan,et al.  Soret and Dufour effects in stretching flow of Jeffrey fluid subject to Newtonian heat and mass conditions , 2017 .

[37]  T. Hayat,et al.  Magneto-hydrodynamical numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface , 2018 .

[38]  A. Alsaedi,et al.  Entropy optimization and quartic autocatalysis in MHD chemically reactive stagnation point flow of Sisko nanomaterial , 2018, International Journal of Heat and Mass Transfer.

[39]  Ahmed Alsaedi,et al.  A comparative study of Casson fluid with homogeneous-heterogeneous reactions. , 2017, Journal of colloid and interface science.

[40]  Masood Khan,et al.  Influence of non-linear thermal radiation on 2D unsteady flow of a Williamson fluid with heat source/sink , 2017 .

[41]  Ahmed Alsaedi,et al.  Entropy generation in flow with silver and copper nanoparticles , 2018 .

[42]  Ahmed Alsaedi,et al.  Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions , 2016 .

[43]  A. Alsaedi,et al.  Nonlinear thermal radiation in flow induced by a slendering surface accounting thermophoresis and Brownian diffusion , 2017 .

[44]  Ahmet Z. Sahin,et al.  Second Law Analysis of Laminar Viscous Flow Through a Duct Subjected to Constant Wall Temperature , 1998 .

[45]  Muhammad Ijaz Khan,et al.  Framing the performance of heat absorption/generation and thermal radiation in chemically reactive Darcy-Forchheimer flow , 2017 .

[46]  A. Alsaedi,et al.  Entropy generation in dissipative flow of Williamson fluid between two rotating disks , 2018, International Journal of Heat and Mass Transfer.

[47]  Ahmed Alsaedi,et al.  On the performance of heat absorption/generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid , 2017 .

[48]  Takahiro Wako,et al.  Development of a MEMS channel device for hydrogen gas separation based on the Soret effect , 2014 .

[49]  Muhammad Ijaz Khan,et al.  Chemically reactive flow of micropolar fluid accounting viscous dissipation and Joule heating , 2017 .

[50]  Shijun Liao,et al.  Homotopy Analysis Method in Nonlinear Differential Equations , 2012 .

[51]  Kai-Long Hsiao,et al.  To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method , 2017 .