Parameter-Robust Preconditioning for Oseen Iteration Applied to Stationary and Instationary Navier-Stokes Control

We derive novel, fast, and parameter-robust preconditioned iterative methods for steady and time-dependent Navier–Stokes control problems. Our approach may be applied to timedependent problems which are discretized using backward Euler or Crank–Nicolson, and is also a valuable candidate for Stokes control problems discretized using Crank–Nicolson. The key ingredients of the solver are a saddle-point type approximation for the linear systems, an inner iteration for the (1, 1)-block accelerated by a preconditioner for convection–diffusion control, and an approximation to the Schur complement based on a potent commutator argument applied to an appropriate block matrix. A range of numerical experiments validate the effectiveness of our new approach.

[1]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[2]  H GolubGene,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[3]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[4]  J. Scott,et al.  HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[7]  Ilse C. F. Ipsen A Note on Preconditioning Nonsymmetric Matrices , 2001, SIAM J. Sci. Comput..

[8]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[9]  Stefan Turek,et al.  A Space-Time Multigrid Method for Optimal Flow Control , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[10]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[11]  Gene H. Golub,et al.  Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second-order Richardson iterative methods, Parts I and II , 2007, Milestones in Matrix Computation.

[12]  Andrew J. Wathen,et al.  Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..

[13]  Gunar Matthies,et al.  Local projection type stabilization applied to inf–sup stable discretizations of the Oseen problem , 2015 .

[14]  A. Wathen Chebyshev semi-iteration in Preconditioning , 2008 .

[15]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[16]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[17]  Tomás Roubícek,et al.  Optimal control of Navier-Stokes equations by Oseen approximation , 2007, Comput. Math. Appl..

[18]  Andrew J. Wathen,et al.  Preconditioning for boundary control problems in incompressible fluid dynamics , 2015, Numer. Linear Algebra Appl..

[19]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[20]  Michel Verhaegen,et al.  Preconditioning Navier–Stokes control using multilevel sequentially semiseparable matrix computations , 2020, Numer. Linear Algebra Appl..

[21]  John W. Pearson,et al.  Fast iterative solver for the optimal control of time‐dependent PDEs with Crank–Nicolson discretization in time , 2020, Numer. Linear Algebra Appl..

[22]  Maxim A. Olshanskii,et al.  Stabilized finite element schemes with LBB-stable elements for incompressible flows , 2005 .

[23]  Owe Axelsson,et al.  A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic control , 2017, J. Comput. Appl. Math..

[24]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[25]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[26]  Valeria Simoncini,et al.  Efficient Preconditioning for an Optimal Control Problem with the Time-Periodic Stokes Equations , 2013, ENUMATH.

[27]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[28]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[29]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[30]  Michael Hintermüller,et al.  A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints , 2006, SIAM J. Optim..

[31]  Lutz Tobiska,et al.  A modified streamline diffusion method for solving the stationary Navier-Stokes equation , 1991 .

[32]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[33]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[34]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[35]  John W. Pearson,et al.  Preconditioned iterative methods for Navier-Stokes control problems , 2015, J. Comput. Phys..

[36]  A. Wathen,et al.  FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .

[37]  J. Pearson On the development of parameter-robust preconditioners and commutator arguments for solving Stokes control problems , 2015 .

[38]  S. SIAMJ.,et al.  AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .

[39]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[40]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..