暂无分享,去创建一个
[1] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[2] H GolubGene,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[3] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[4] J. Scott,et al. HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .
[5] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[6] Andrew J. Wathen,et al. A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..
[7] Ilse C. F. Ipsen. A Note on Preconditioning Nonsymmetric Matrices , 2001, SIAM J. Sci. Comput..
[8] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[9] Stefan Turek,et al. A Space-Time Multigrid Method for Optimal Flow Control , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[10] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[11] Gene H. Golub,et al. Chebyshev semi-iterative methods, successive over-relaxation iterative methods, and second-order Richardson iterative methods, Parts I and II , 2007, Milestones in Matrix Computation.
[12] Andrew J. Wathen,et al. Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..
[13] Gunar Matthies,et al. Local projection type stabilization applied to inf–sup stable discretizations of the Oseen problem , 2015 .
[14] A. Wathen. Chebyshev semi-iteration in Preconditioning , 2008 .
[15] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[16] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[17] Tomás Roubícek,et al. Optimal control of Navier-Stokes equations by Oseen approximation , 2007, Comput. Math. Appl..
[18] Andrew J. Wathen,et al. Preconditioning for boundary control problems in incompressible fluid dynamics , 2015, Numer. Linear Algebra Appl..
[19] Erik Burman,et al. Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..
[20] Michel Verhaegen,et al. Preconditioning Navier–Stokes control using multilevel sequentially semiseparable matrix computations , 2020, Numer. Linear Algebra Appl..
[21] John W. Pearson,et al. Fast iterative solver for the optimal control of time‐dependent PDEs with Crank–Nicolson discretization in time , 2020, Numer. Linear Algebra Appl..
[22] Maxim A. Olshanskii,et al. Stabilized finite element schemes with LBB-stable elements for incompressible flows , 2005 .
[23] Owe Axelsson,et al. A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic control , 2017, J. Comput. Appl. Math..
[24] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[25] Jukka Saranen,et al. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .
[26] Valeria Simoncini,et al. Efficient Preconditioning for an Optimal Control Problem with the Time-Periodic Stokes Equations , 2013, ENUMATH.
[27] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[28] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[29] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[30] Michael Hintermüller,et al. A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints , 2006, SIAM J. Optim..
[31] Lutz Tobiska,et al. A modified streamline diffusion method for solving the stationary Navier-Stokes equation , 1991 .
[32] Roland Becker,et al. Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.
[33] Walter Zulehner,et al. Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..
[34] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[35] John W. Pearson,et al. Preconditioned iterative methods for Navier-Stokes control problems , 2015, J. Comput. Phys..
[36] A. Wathen,et al. FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .
[37] J. Pearson. On the development of parameter-robust preconditioners and commutator arguments for solving Stokes control problems , 2015 .
[38] S. SIAMJ.,et al. AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .
[39] Martin Stoll,et al. Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[40] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..