Criteria for farthest points on convex surfaces

We provide a sharp, sufficient condition to decide if a point y on a convex surface S is a farthest point (i.e., is at maximal intrinsic distance from some point) on S, involving a lower bound π on the total curvature ωy at y, ωy ≥ π. Further consequences are obtained when ωy > π, and sufficient conditions are derived to guarantee that a convex cap contains at least one farthest point. A connection between simple closed quasigeodesics O of S, points y ∈ S\O with ωy > π, and the set of all farthest points on S, is also investigated (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Common maxima of distance functions on orientable Alexandrov surfaces , 2008 .

[2]  T. Zamfirescu,et al.  Symmetry and the farthest point mapping on convex surfaces , 2006 .

[3]  Joël Rouyer On antipodes on a convex polyhedron II , 2005 .

[4]  A. V. Pogorelov Extrinsic geometry of convex surfaces , 1973 .

[5]  T. Zamfirescu,et al.  Multiple farthest points on Alexandrov surfaces , 2007 .

[6]  Jin-ichi Itoh,et al.  Antipodal convex hypersurfaces , 2008 .

[7]  Extreme points of the distance function on convex surfaces , 1998 .

[8]  D. Essouabri,et al.  Values at $T$-tuples of negative integers of twisted multivariable zeta series associated to polynomials of several variables , 2005, Compositio Mathematica.

[9]  Boris Aronov,et al.  Star Unfolding of a Polytope with Applications , 1997, SIAM J. Comput..

[10]  Joseph O'Rourke,et al.  Computing the geodesic diameter of a 3-polytope , 1989, SCG '89.

[11]  Joël Rouyer Antipodes sur un tétraèdre régulier , 2003 .

[12]  Y. Otsu,et al.  The Riemannian structure of Alexandrov spaces , 1994 .

[13]  Costin Vîlcu On Two Conjectures of Steinhaus , 2000 .

[14]  T. Zamfirescu Farthest points on convex surfaces , 1997 .

[15]  P. Gruber A typical convex surface contains no closed geodesic. , 1991 .

[16]  Jin-ichi Itoh,et al.  Farthest points and cut loci on some degenerate convex surfaces , 2004 .

[17]  Lev Arkadʹevich Kaluzhnin,et al.  Die innere Geometrie der konvexen Flächen , 1955 .