Hydrogen embrittlement susceptibility and permeability of two ultra-high strength steels

[1]  L. Tsay,et al.  Embrittlement of T-200 maraging steel in a hydrogen sulfide solution , 2005 .

[2]  L. Tsay,et al.  Notched tensile testing of T-200 maraging steel and its laser welds in hydrogen , 2003 .

[3]  L. Tsay,et al.  Notch tensile properties of laser-surface-annealed 17-4 PH stainless steel in hydrogen-related environments , 2002 .

[4]  L. Tsay,et al.  Effect of hydrogen environment on the notched tensile properties of T-250 maraging steel annealed by laser treatment , 2002 .

[5]  L. Tsay,et al.  Influence of gaseous hydrogen on the notched tensile strength of D6ac steel , 2001 .

[6]  Wen-Ta Tsai,et al.  Environmentally assisted cracking behavior of duplex stainless steel in concentrated sodium chloride solution , 2000 .

[7]  L. Tsay,et al.  Crack growth behaviour of heat-treated 4140 steel in air and gaseous hydrogen , 1998 .

[8]  L. Tsay,et al.  Hydrogen embrittlement of a Ti-strengthened 250 grade maraging steel , 1997 .

[9]  A. Yokobori,et al.  Numerical analysis on hydrogen diffusion and concentration in solid with emission around the crack tip , 1996 .

[10]  D. Hardie,et al.  The effect of stress concentration on hydrogen embrittlement of a low alloy steel , 1996 .

[11]  K. Tsuboi,et al.  Hydrogen induced cracking in high strength steel , 1996 .

[12]  R. Valentini,et al.  Influence of microstructure on hydrogen embrittlement behaviour of 2·25Cr–1 Mo steel , 1994 .

[13]  J. Scully,et al.  Hydrogen embrittlement behavior of palladium modified PH 13-8 Mo stainless steel as a function of age hardening , 1994 .

[14]  C. V. Robino,et al.  Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure , 1994 .

[15]  Jian Xu,et al.  HYDROGEN PERMEATION AND DIFFUSION IN A 0.2C-13Cr MARTENSITIC STAINLESS STEEL , 1993 .

[16]  J. Toribio Role of hydrostatic stress in hydrogen diffusion in pearlitic steel , 1993 .

[17]  Jesús Toribio,et al.  Macroscopic variables governing the microscopic fracture of pearlitic steels , 1991 .

[18]  D. Hardie,et al.  Effect of Structural Orientation on the Susceptibility of Commercial Duplex Stainless Steels to Hydrogen Embrittlement , 1991 .

[19]  W. Bass,et al.  Sulfide Stress Cracking Failures of 12Cr and 17-4PH Stainless Steel Wellhead Equipment , 1991 .

[20]  P. Munn,et al.  Hydrogen Embrittlement of PH13-8Mo Steel in Simulated Real-Life Tests and Slow Strain Rate Tests , 1990 .

[21]  J. Byrne,et al.  A study of hydrogen embrittlement in 4340 steel I: Mechanical aspects , 1990 .

[22]  D. M. Vanderwalker The precipitation sequence of Ni3Ti in Co-free maraging steel , 1987, Metallurgical and Materials Transactions A.

[23]  F. Heubaum,et al.  The Role of Hydrogen in Sulfide Stress Cracking of Low Alloy Steels , 1984 .

[24]  G. Pressouyre A classification of hydrogen traps in steel , 1979 .

[25]  I. Bernstein,et al.  A quantitative analysis of hydrogen trapping , 1978 .

[26]  C. D. Beachem,et al.  A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) , 1972 .

[27]  Z. Stachurski,et al.  The adsorption and diffusion of electrolytic hydrogen in palladium , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  S. Saroja,et al.  Influence of microstructure on the hydrogen permeability of 9%Cr–1%Mo ferritic steel , 1999 .

[29]  Y. L. Liu,et al.  Influence of manganese on microstructure and solidification behaviour of aluminium magnesium alloys , 1996 .

[30]  T. Taira,et al.  The resistance of welded linepipes to sulfide stress cracking , 1987 .

[31]  V. Seetharaman,et al.  Precipitation hardening in a PH 13-8 Mo stainless steel , 1981 .