SPLINE ESTIMATION OF SINGLE-INDEX MODELS

For the past two decades, the single-index model, a special case of pro- jection pursuit regression, has proven to be an efficient way of coping with the high-dimensional problem in nonparametric regression. In this paper, based on a weakly dependent sample, we investigate a robust single-index model, where the single-index is identified by the best approximation to the multivariate prediction function of the response variable, regardless of whether the prediction function is a genuine single-index function. A polynomial spline estimator is proposed for the single-index coefficients, and is shown to be root-n consistent and asymptoti- cally normal. An iterative optimization routine is used that is sufficiently fast for the user to analyze large data sets of high dimension within seconds. Simulation experiments have provided strong evidence corroborating the asymptotic theory. Application of the proposed procedure to the river flow data of Iceland has yielded superior out-of-sample rolling forecasts.

[1]  H. Tong,et al.  Threshold time series modelling of two Icelandic riverflow systems , 1985 .

[2]  Lijian Yang,et al.  Estimation of semi-parametric additive coefficient model , 2006 .

[3]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[4]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[5]  W. Härdle,et al.  Optimal Smoothing in Single-index Models , 1993 .

[6]  Yingcun Xia,et al.  A GOODNESS-OF-FIT TEST FOR SINGLE-INDEX MODELS , 2004 .

[7]  Lijian Yang,et al.  Spline-backfitted kernel smoothing of nonlinear additive autoregression model , 2006, math/0612677.

[8]  Thomas M. Stoker,et al.  Investigating Smooth Multiple Regression by the Method of Average Derivatives , 2015 .

[9]  H. Ichimura,et al.  SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .

[10]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[11]  A. Juditsky,et al.  Direct estimation of the index coefficient in a single-index model , 2001 .

[12]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[13]  Enno Mammen,et al.  The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .

[14]  Lan Xue,et al.  ADDITIVE COEFFICIENT MODELING VIA POLYNOMIAL SPLINE , 2005 .

[15]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[16]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[17]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[18]  W. Härdle,et al.  Direct Semiparametric Estimation of Single-Index Models with Discrete Covariates dpsfb950075.ps.tar = Enno MAMMEN J.S. MARRON: Mass Recentered Kernel Smoothers , 1996 .

[19]  Lijian Yang,et al.  Spline Single-Index Prediction Model , 2007, 0704.0302.

[20]  Jianhua Z. Huang,et al.  Identification of non‐linear additive autoregressive models , 2004 .

[21]  Runze Li,et al.  Statistical Challenges with High Dimensionality: Feature Selection in Knowledge Discovery , 2006, math/0602133.

[22]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[23]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[24]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[25]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[26]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[27]  Yingcun Xia,et al.  On Single-Index Coefficient Regression Models , 1999 .

[28]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[29]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[30]  Hung Chen,et al.  ESTIMATION OF A PROJECTION-PURSUIT TYPE REGRESSION MODEL' , 1991 .

[31]  P. Tuan The mixing property of bilinear and generalised random coefficient autoregressive models , 1986 .