Calvin Digital Commons Calvin Digital Commons Author Correction: Herbivorous turtle ants obtain essential Author Correction: Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome nutrients from a conserved nitrogen-recycling gut microbiome (Nature Comm

[1]  Rob Knight,et al.  Dramatic Differences in Gut Bacterial Densities Correlate with Diet and Habitat in Rainforest Ants. , 2017, Integrative and comparative biology.

[2]  D. Janzen,et al.  Caterpillars lack a resident gut microbiome , 2017, Proceedings of the National Academy of Sciences.

[3]  N. Moran,et al.  Dynamic microbiome evolution in social bees , 2017, Science Advances.

[4]  A. Suarez,et al.  By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes , 2017, Molecular ecology.

[5]  Mark R. Brown,et al.  Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats , 2016, Molecular ecology.

[6]  I-Min A. Chen,et al.  IMG/M: integrated genome and metagenome comparative data analysis system , 2016, Nucleic Acids Res..

[7]  Andrey D. Prjibelski,et al.  Icarus: visualizer for de novo assembly evaluation , 2016, Bioinform..

[8]  W. J. Hobson,et al.  Ventosimonas gracilis gen. nov., sp. nov., a member of the Gammaproteobacteria isolated from Cephalotes varians ant guts representing a new family, Ventosimonadaceae fam. nov., within the order 'Pseudomonadales'. , 2016, International journal of systematic and evolutionary microbiology.

[9]  J. Sanders,et al.  Cephaloticoccus gen. nov., a new genus of 'Verrucomicrobia' containing two novel species isolated from Cephalotes ant guts. , 2016, International journal of systematic and evolutionary microbiology.

[10]  T. Larsen,et al.  Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions , 2016, PeerJ.

[11]  A. Latorre,et al.  Reinventing the Wheel and Making It Round Again: Evolutionary Convergence in Buchnera–Serratia Symbiotic Consortia between the Distantly Related Lachninae Aphids Tuberolachnus salignus and Cinara cedri , 2016, Genome biology and evolution.

[12]  Alexey A. Gurevich,et al.  MetaQUAST: evaluation of metagenome assemblies , 2016, Bioinform..

[13]  A. Ellison,et al.  Convergence in Multispecies Interactions. , 2016, Trends in ecology & evolution.

[14]  D. Wheeler,et al.  A bacterial filter protects and structures the gut microbiome of an insect , 2016, The ISME Journal.

[15]  A. Brune,et al.  The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. , 2015, Annual review of microbiology.

[16]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[17]  A. Brune,et al.  Diet is the primary determinant of bacterial community structure in the guts of higher termites , 2015, Molecular ecology.

[18]  A. Merli,et al.  The identification of an integral membrane, cytochrome c urate oxidase completes the catalytic repertoire of a therapeutic enzyme , 2015, Scientific Reports.

[19]  N. Gerardo,et al.  An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects , 2015, Proceedings of the Royal Society B: Biological Sciences.

[20]  Laura E. Williams,et al.  Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini , 2015, PeerJ.

[21]  N. Moran,et al.  Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera , 2014, Applied and Environmental Microbiology.

[22]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[23]  J. Seger,et al.  Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis , 2014, Proceedings of the National Academy of Sciences.

[24]  Scott Powell,et al.  Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes , 2014, Molecular ecology.

[25]  Piotr Łukasik,et al.  Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability , 2014, Molecular ecology.

[26]  R. Wayne,et al.  Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants , 2014, Journal of evolutionary biology.

[27]  M. Blaxter,et al.  Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots , 2013, Front. Genet..

[28]  John M. Chaston,et al.  The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis , 2013, The ISME Journal.

[29]  P. Schmid-Hempel,et al.  Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees , 2013, Molecular ecology.

[30]  Deborah M. Gordon,et al.  The Dynamics of Foraging Trails in the Tropical Arboreal Ant Cephalotes goniodontus , 2012, PloS one.

[31]  C. Moreau,et al.  Highly similar microbial communities are shared among related and trophically similar ant species , 2012, Molecular ecology.

[32]  Suzanne M. Paley,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases , 2011, Nucleic Acids Res..

[33]  K. Del‐Claro,et al.  Nectar- and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experiment to test ant protective capabilities , 2010, acta ethologica.

[34]  David J. Lohman,et al.  Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants , 2009, Proceedings of the National Academy of Sciences.

[35]  David M. Stevenson,et al.  Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants , 2009, Science.

[36]  N. Moran,et al.  Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont , 2009, Proceedings of the National Academy of Sciences.

[37]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[38]  A. Suarez,et al.  Trophic ecology of invasive Argentine ants in their native and introduced ranges , 2007, Proceedings of the National Academy of Sciences.

[39]  Helmut Hillebrand,et al.  Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. , 2007, Ecology letters.

[40]  J. Gadau,et al.  Bacterial microbiota associated with ants of the genus Tetraponera , 2007 .

[41]  A. Mochizuki,et al.  Nitrogen fixation in the stag beetle, Dorcus (Macrodorcus) rectus (Motschulsky) (Col., Lucanidae) , 2006 .

[42]  S. Tojo,et al.  Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. , 2006, Journal of insect physiology.

[43]  B. Yuval,et al.  Enterobacteria‐mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata , 2005, Molecular ecology.

[44]  N. Blüthgen,et al.  Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community , 2003, Oecologia.

[45]  D. Davidson,et al.  Explaining the Abundance of Ants in Lowland Tropical Rainforest Canopies , 2003, Science.

[46]  J. Boomsma,et al.  Tetraponera ants have gut symbionts related to nitrogen–fixing root–nodule bacteria , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  A. Shingleton,et al.  Host plant and ants influence the honeydew sugar composition of aphids , 2001 .

[48]  K. Jaffe,et al.  Sensitivity of ant (Cephalotes) colonies and individuals to antibiotics implies feeding symbiosis with gut microorganisms , 2001 .

[49]  A. Douglas,et al.  Quantifying nutrient production by the microbial symbionts in an aphid. , 2001, The Journal of experimental biology.

[50]  Michael Y. Galperin,et al.  Analogous enzymes: independent inventions in enzyme evolution. , 1998, Genome research.

[51]  D. Wheeler,et al.  Morphological specializations of the digestive tract of Zacryptocerus rohweri (Hymenoptera: Formicidae) , 1997, Journal of morphology.

[52]  D. Wheeler,et al.  Storage proteins in ants (Hymenoptera:Formicidae). , 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[53]  A. Sugimoto,et al.  Xylophagous termites depending on atmospheric nitrogen , 1994, Naturwissenschaften.

[54]  D. Wheeler Behavior of the Ant, Procryptocerus Scabriusculus (Hymenoptera: Formicidae),With Comparisons to Other Cephalotines , 1984 .

[55]  F. S. Chapin,et al.  The Mineral Nutrition of Wild Plants , 1980 .

[56]  H. G. Baker,et al.  A Comparison of the Amino Acid Complements of Floral and Extrafloral Nectars , 1978, Botanical Gazette.

[57]  J. French,et al.  Nitrogen fixation by bacteria from the hindgut of termites. , 1976, Journal of general microbiology.

[58]  E. Wilson A social ethogram of the neotropical arboreal ant Zacryptocerus varians (Fr. Smith) , 1976, Animal Behaviour.

[59]  J. Benemann Nitrogen Fixation in Termites , 1973, Science.

[60]  Ussell,et al.  Hotspots for symbiosis: function, evolution, and sp ecificity of ant-microbe associa- tions from trunk to tips of the ant phylogeny (Hyme noptera: Formicidae) , 2016 .

[61]  A. Wilson,et al.  Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont , 2011, Cellular and Molecular Life Sciences.

[62]  Martin J. Mueller,et al.  Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia , 2007, BMC Biology.

[63]  H. Feldhaar,et al.  Development of a chemically defined diet for ants , 2007, Insectes Sociaux.

[64]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[65]  A. Douglas,et al.  Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. , 1998, Annual review of entomology.

[66]  Supplemental Information 2: Kyoto Encyclopedia of genes and genomes. , 2022 .