An efficient parallel strategy for the perfect domination problem on distance-hereditary graphs

A graph is distance-hereditary if the distance stays the same between any of two vertices in every connected induced subgraph containing both. Two well-known classes of graphs, trees and cographs, both belong to distance-hereditary graphs. In this paper, we first show that the perfect domination problem can be solved in sequential linear-time on distance-hereditary graphs. By sketching some regular property of the problem, we also show that it can be easily parallelized on distance-hereditary graphs.

[1]  Peter Zinterhof,et al.  Parallel computation : 4th International ACPC Conference including special tracks on Parallel Numerics (ParNum '99) and Parellel Computing in Image Processing, Video Processing, and Multimedia, Salzburg, Austria, February 16-18, 1999 : proceedings , 1999 .

[2]  Tsan-sheng Hsu,et al.  Efficient Algorithms for the Hamiltonian Problem on Distance-Hereditary Graphs , 2002, COCOON.

[3]  Richard C. T. Lee,et al.  The Weighted Perfect Domination Problem , 1990, Inf. Process. Lett..

[4]  Sun-Yuan Hsieh Parallel Decomposition of Distance-Hereditary Graphs , 1999, ACPC.

[5]  H. B. Walikar,et al.  On domination related concepts in Graph Theory , 1981 .

[6]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[7]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[8]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[9]  E. Howorka A CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS , 1977 .

[10]  G. Nemhauser,et al.  The k-Domination and k-Stability Problems on Sun-Free Chordal Graphs , 1984 .

[11]  David G. Kirkpatrick,et al.  A Simple Parallel Tree Contraction Algorithm , 1989, J. Algorithms.

[12]  Maw-Shang Chang,et al.  Hamiltonian Cycle Problem on Distance-Hereditary Graphs , 2003, J. Inf. Sci. Eng..

[13]  G. Chang,et al.  THE PATH-PARTITION PROBLEM IN BIPARTITE DISTANCE-HEREDITARY GRAPHS , 1998 .

[14]  Haiko Müller,et al.  Polynomial Time Algorithms for Hamiltonian Problems on Bipartite Distance-Hereditary Graphs , 1993, Inf. Process. Lett..

[15]  Tsan-sheng Hsu,et al.  Efficient parallel algorithms on distance-hereditary graphs , 1997, Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162).

[16]  Peter J. Slater,et al.  R-Domination in Graphs , 1976, J. ACM.

[17]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[18]  Gen-Huey Chen,et al.  Characterization of Efficiently Parallel Solvable Problems on Distance-Hereditary Graphs , 2002, SIAM J. Discret. Math..

[19]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[20]  Elias Dahlhaus,et al.  Efficient Parallel Recognition Algorithms of Cographs and Distance Hereditary Graphs , 1995, Discret. Appl. Math..

[21]  Marina Moscarini,et al.  Distance-Hereditary Graphs, Steiner Trees, and Connected Domination , 1988, SIAM J. Comput..

[22]  Hong-Gwa Yeh,et al.  Weighted Connected Domination and Steiner Trees in Distance-hereditary Graphs , 1998, Discret. Appl. Math..

[23]  Paul M. Weichsel,et al.  Dominating sets in n-cubes , 1994, J. Graph Theory.

[24]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[25]  A. Brandstädt,et al.  A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs , 1998 .

[26]  Gen-Huey Chen,et al.  Dynamic Programming on Distance-Hereditary Graphs , 1997, ISAAC.

[27]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[28]  Richard C. T. Lee,et al.  The Weighted Perfect Domination Problem and Its Variants , 1996, Discret. Appl. Math..

[29]  Gerard J. Chang Labeling algorithms for domination problems in sun-free chordal graphs , 1988, Discret. Appl. Math..

[30]  Stephen T. Hedetniemi,et al.  A Linear Algorithm for the Domination Number of a Tree , 1975, Inf. Process. Lett..

[31]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[32]  Sun-Yuan Hsieh An Efficient Parallel Algorithm for the Efficient Domination Problem on Distance-Hereditary Graphs , 2002, IEEE Trans. Parallel Distributed Syst..

[33]  Michel Habib,et al.  A simple paradigm for graph recognition: application to cographs and distance hereditary graphs , 2001, Theor. Comput. Sci..

[34]  S. M. Hedetniemi,et al.  On the Algorithmic Complexity of Total Domination , 1984 .

[35]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[36]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[37]  Feodor F. Dragan,et al.  Dominating Cliques in Distance-Hereditary Graphs , 1994, SWAT.

[38]  Hong-Gwa Yeh,et al.  Weighted connected k-domination and weighted k-dominating clique in distance-hereditary graphs , 2001, Theor. Comput. Sci..

[39]  Tsan-sheng Hsu,et al.  A Faster Implementation of a Parallel Tree Contraction Scheme and Its Application on Distance-Hereditary Graphs , 2000, J. Algorithms.