Glyphs for General Second-Order 2D and 3D Tensors.

Glyphs are a powerful tool for visualizing second-order tensors in a variety of scientic data as they allow to encode physical behavior in geometric properties. Most existing techniques focus on symmetric tensors and exclude non-symmetric tensors where the eigenvectors can be non-orthogonal or complex. We present a new construction of 2d and 3d tensor glyphs based on piecewise rational curves and surfaces with the following properties: invariance to (a) isometries and (b) scaling, (c) direct encoding of all real eigenvalues and eigenvectors, (d) one-to-one relation between the tensors and glyphs, (e) glyph continuity under changing the tensor. We apply the glyphs to visualize the Jacobian matrix fields of a number of 2d and 3d vector fields.

[1]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[2]  Robert S. Laramee,et al.  Asymmetric Tensor Analysis for Flow Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  Holger Theisel,et al.  Vector Field Metrics Based on Distance Measures of First Order Critical Points , 2002, WSCG.

[4]  Gerald Farin,et al.  Curves and surfaces for cagd , 1992 .

[5]  Robert B. Haber,et al.  Visualization techniques for engineering mechanics , 1990 .

[6]  Björn Meyer,et al.  A Visual Approach to Analysis of Stress Tensor Fields , 2011, Scientific Visualization: Interactions, Features, Metaphors.

[7]  Rebecca M. Brannon,et al.  Visualization of salt-induced stress perturbations , 2004, IEEE Visualization 2004.

[8]  L. Piegl,et al.  Curve and surface constructions using rational B-splines , 1987 .

[9]  G. Strang Introduction to Linear Algebra , 1993 .

[10]  Gordon L. Kindlmann,et al.  Glyphs for Asymmetric Second‐Order 2D Tensors , 2016, Comput. Graph. Forum.

[11]  Andrea Kratz Three-Dimensional Second-Order Tensor Fields: Exploratory Visualization and Anisotropic Sampling , 2013 .

[12]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[13]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[14]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[15]  G. Kindlmann,et al.  Superquadric Glyphs for Symmetric Second-Order Tensors , 2010, IEEE Transactions on Visualization and Computer Graphics.

[16]  Jarke J. van Wijk,et al.  A Probe for Local Flow Field Visualization , 1993, IEEE Visualization.

[17]  Markus Stommel,et al.  Visualization and Analysis of Second‐Order Tensors: Moving Beyond the Symmetric Positive‐Definite Case , 2013, Comput. Graph. Forum.

[18]  Rüdiger Westermann,et al.  Stress Tensor Field Visualization for Implant Planning in Orthopedics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[19]  Carlos Eduardo Scheidegger,et al.  An Algebraic Process for Visualization Design , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Robert S. Laramee,et al.  Asymmetric tensor visualization with glyph and hyperstreamline placement on 2D manifolds , 2009 .