Best N-term approximation in electronic structure calculations. II. Jastrow factors

We present a novel application of best N-term approximation theory in the framework of electronic structure calculations. The paper focusses on the description of electron correlations within a Jastrow-type ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymptotic behaviour of two-particle correlation functions F (2) near electron-electron and electron- nuclear cusps. Based on Nitsche's characterization of best N-term approximation spaces A α (H 1 ), we prove that F (2) ∈ A α (H 1 )f or q> 1a ndα = 1 − 1 with respect to a certain class of anisotropic wavelet tensor product bases. Computational arguments are given in favour of this specific class compared to other possible tensor product bases. Finally, we compare the approximation properties of wavelet bases with standard Gaussian-type basis sets frequently used in quantum chemistry. Mathematics Subject Classification. 41A50, 41A63, 65Z05, 81V70.

[1]  W. Hackbusch,et al.  Perturbative calculation of Jastrow factors , 2007 .

[2]  W. Hackbusch,et al.  Perturbative calculation of Jastrow factors : Accurate description of short-range correlations , 2007 .

[3]  R. Serfling,et al.  Asymptotic Expansions—I , 2006 .

[4]  Pál-Andrej Nitsche,et al.  Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .

[5]  Reinhold Schneider,et al.  Esaim: Mathematical Modelling and Numerical Analysis Best N -term Approximation in Electronic Structure Calculations I. One-electron Reduced Density Matrix , 2022 .

[6]  Harry Yserentant,et al.  Sparse grid spaces for the numerical solution of the electronic Schrödinger equation , 2005, Numerische Mathematik.

[7]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[8]  Wolfgang Hackbusch,et al.  Diagrammatic multiresolution analysis for electron correlations , 2005 .

[9]  R. Needs,et al.  Jastrow correlation factor for atoms, molecules, and solids , 2004, 0801.0378.

[10]  Harry Yserentant,et al.  On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives , 2004, Numerische Mathematik.

[11]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[12]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[13]  Søren Fournais,et al.  Sharp Regularity Results for Coulombic Many-Electron Wave Functions , 2003, math-ph/0312060.

[14]  Wolfgang Hackbusch Wavelet approximation of correlated wavefunctions � , 2003 .

[15]  Pál-Andrej Nitsche,et al.  Sparse Approximation of Singularity Functions , 2003 .

[16]  Wolfgang Hackbusch,et al.  Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes , 2002 .

[17]  Reinhold Schneider,et al.  Wavelet approximation of correlated wave functions. I. Basics , 2002 .

[18]  Maziar Nekovee,et al.  Inhomogeneous random-phase approximation and many-electron trial wave functions , 2001 .

[19]  M. Griebel,et al.  On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .

[20]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[21]  M. Ratner Molecular electronic-structure theory , 2000 .

[22]  P. Fulde Ground‐state wave functions and energies of solids , 2000 .

[23]  Max-Planck-Institut für Mathematik in den Naturwissenschaften , 2000 .

[24]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[25]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[26]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .

[27]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[28]  Chien-Jung Huang C. J. Umrigar M.P. Nightingale Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations , 1997, cond-mat/9703008.

[29]  G. Stollhoff The local ansatz extended , 1996 .

[30]  Foulkes,et al.  Optimized wave functions for quantum Monte Carlo studies of atoms and solids. , 1996, Physical review. B, Condensed matter.

[31]  A. Savin,et al.  A new Jastrow factor for atoms and molecules, using two‐electron systems as a guiding principle , 1995 .

[32]  Savin,et al.  Transfer of electron correlation from an electron gas to inhomogeneous systems via Jastrow factors. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  T. Hoffmann-Ostenhof,et al.  Local properties of Coulombic wave functions , 1994 .

[34]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .

[35]  Marco Häser Electron Correlations in Molecules and Solids , 1994 .

[36]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[37]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[38]  E. Krotscheck,et al.  Electron correlations in atomic systems , 1992 .

[39]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[40]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[41]  Jules W. Moskowitz,et al.  Correlated Monte Carlo wave functions for the atoms He through Ne , 1990 .

[42]  E. Krotscheck,et al.  Local structure of electron correlations in atomic systems , 1989 .

[43]  Wilson,et al.  Optimized trial wave functions for quantum Monte Carlo calculations. , 1988, Physical review letters.

[44]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[45]  Kohn,et al.  Theory of inhomogeneous quantum systems. IV. Variational calculations of metal surfaces. , 1985, Physical review. B, Condensed matter.

[46]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[47]  Krotscheck Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids. , 1985, Physical review. B, Condensed matter.

[48]  Percy Deift,et al.  Review: Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators , 1985 .

[49]  E. Krotscheck,et al.  Variations on the electron gas , 1984 .

[50]  J. D. Morgan,et al.  Variational calculations on the helium isoelectronic sequence , 1984 .

[51]  Shmuel Agmon,et al.  Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .

[52]  Cusp conditions for eigenfunctions of n -electron systems , 1981 .

[53]  Peter Fulde,et al.  On the computation of electronic correlation energies within the local approach , 1980 .

[54]  D. Ceperley Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions , 1978 .

[55]  R. Wiringa,et al.  A variational theory of nuclear matter , 1976 .

[56]  J. D. Talman Variational calculation for the electron gas at intermediate densities , 1976 .

[57]  J. D. Talman Linked-cluster expansion for Jastrow-type wave functions and its application to the electron-gas problem , 1974 .