Geometry, electronic structure, and magnetism of small Nin (n = 2–6, 8, 13) clusters

Abstract Electronic structure, geometries, and magnetic moments of small Nin (n = 2–6, 8, 13) clusters have been studied using a linear combination of atomic orbital-molecular orbital approach within the density functional formalism. The clusters are found to exhibit an abundance of electronic states corresponding to different geometries and spin multiplicites close to their ground states. Ni4 has two isomers with different geometries. All the clusters have finite total spins but the moment per atom varies considerably with size. Ni4 and Ni5 are found to have abnormally large magnetic moments per atom and Ni5 is a magnetic magic number.

[1]  Linderoth,et al.  Magnetic behavior of clusters of ferromagnetic transition metals. , 1991, Physical review letters.

[2]  Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments , 1991 .

[3]  N. Rösch,et al.  Electronic structure and properties of nickel clusters: Ni6, Ni8, Ni19, and Ni44 , 1992 .

[4]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[5]  R. O. Jones,et al.  Density functional theory and molecular bonding. III. Iron‐series dimers , 1979 .

[6]  M. Moskovits,et al.  The ultraviolet–visible spectra of diatomic, triatomic, and higher nickel clusters , 1977 .

[7]  E. K. Parks,et al.  The structure of small nickel clusters. I. Ni3–Ni15 , 1994 .

[8]  Cox,et al.  Experimental observation of magnetism in rhodium clusters. , 1993, Physical review letters.

[9]  Reddy,et al.  Giant magnetic moments in 4d clusters. , 1993, Physical review letters.

[10]  W. C. Lineberger,et al.  Photoelectron spectroscopy of nickel group dimers: Ni−2, Pd−2, and Pt−2 , 1993 .

[11]  W. D. de Heer,et al.  Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters , 1994, Science.

[12]  Per E. M. Siegbahn,et al.  Theoretical ionization energies and geometries for nickel (Nin 4 .ltoreq. n .ltoreq. 9) , 1992 .

[13]  J. Almlöf,et al.  The band structure of nickel: ab initio calculations on the Ni6 cluster , 1992 .

[14]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[15]  B. Roos,et al.  The chemical bonds in CuH, Cu2, NiH, and Ni2 studied with multiconfigurational second order perturbation theory , 1994 .

[16]  A. Depristo,et al.  The structure of NiN and PdN clusters: 4≤N≤23 , 1992 .

[17]  D. Salahub,et al.  Local and nonlocal density functional study of Ni4 and Ni5 clusters. Models for the chemisorption of hydrogen on (111) and (100) nickel surfaces , 1991 .

[18]  R. Smalley,et al.  Spectroscopic studies of the jet‐cooled nickel dimer , 1984 .

[19]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[20]  P. Armentrout,et al.  Collision‐induced dissociation of Ni+n (n=2–18) with Xe: Bond energies, geometrical structures, and dissociation pathways , 1992 .

[21]  M. Newton,et al.  The electronic structure of small nickel atom clusters , 1980 .

[22]  S. Walch Computed potential surfaces for six low-lying states of Ni3 , 1987 .

[23]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .