An Addendum to Krein's Formula

Abstract We provide additional results in connection with Krein's formula, which describes the resolvent difference of two self-adjoint extensionsA1andA2of a densely defined closed symmetric linear operatorȦwith deficiency indices (n, n),n ∈  N  ∪ {∞}. In particular, we explicitly derive the linear fractional transformation relating the operator-valued Weyl–TitchmarshM-functionsM1(z) andM2(z) corresponding toA1andA2.

[1]  V. Derkach,et al.  Generalized resolvents and the boundary value problems for Hermitian operators with gaps , 1991 .

[2]  Sergio Albeverio,et al.  Solvable Models in Quantum Mechanics , 1988 .

[3]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[4]  One-dimensional graph perturbations of selfadjoint relations , 1997 .

[5]  K. Friedrichs Perturbation of Spectra , 1973 .

[6]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[7]  H. Langer,et al.  On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space , 1977 .

[8]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[9]  V. Derkach,et al.  The extension theory of Hermitian operators and the moment problem , 1995 .

[10]  H. Holden,et al.  Solvable models in quantum mechanics , 1990 .

[11]  N. Aronszajn On a problem of Weyl in the theory of singular : Sturm-Liouville equations , 1957 .

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[14]  M. Malamud On a formula of the generalized resolvents of a nondensely defined Hermitian operator , 1992 .

[15]  J. Neumann,et al.  Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren , 1930 .

[16]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[17]  E. Tsekanovskiĭ,et al.  THE THEORY OF BI-EXTENSIONS OF OPERATORS ON RIGGED HILBERT SPACES. UNBOUNDED OPERATOR COLLIGATIONS AND CHARACTERISTIC FUNCTIONS , 1977 .