Experiments on MEMS Integration in 0.25 μm CMOS Process

In this paper, we share our practical experience gained during the development of CMOS-MEMS (Complementary Metal-Oxide Semiconductor Micro Electro Mechanical Systems) devices in IHP SG25 technology. The experimental prototyping process is illustrated with examples of three CMOS-MEMS chips and starts from rough process exploration and characterization, followed by the definition of the useful MEMS design space to finally reach CMOS-MEMS devices with inertial mass up to 4.3 μg and resonance frequency down to 4.35 kHz. Furthermore, the presented design techniques help to avoid several structural and reliability issues such as layer delamination, device stiction, passivation fracture or device cracking due to stress.

[1]  Jordi Madrenas,et al.  Characterization of CMOS-MEMS Resonant Pressure Sensors , 2017, IEEE Sensors Journal.

[2]  P. Ruther,et al.  Chapter 2. Material Characterization , 2008 .

[3]  H. Schumacher,et al.  MEMS module integration into SiGe BiCMOS technology for embedded system applications , 2012, 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[4]  C. Dai A maskless wet etching silicon dioxide post-CMOS process and its application , 2006 .

[5]  K. J. Gabriel,et al.  Post-CMOS processing for high-aspect-ratio integrated silicon microstructures , 2002 .

[6]  Jordi Madrenas,et al.  CMOS-MEMS resonant pressure sensors: optimization and validation through comparative analysis , 2017 .

[7]  G. Fedder,et al.  Laminated high-aspect-ratio microstructures in a conventional CMOS process , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[8]  H. Baltes,et al.  CMOS MEMS , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[9]  Jordi Madrenas,et al.  CMOS BEOL-embedded lateral accelerometer , 2015, 2015 IEEE SENSORS.

[10]  Jordi Madrenas,et al.  Curvature of BEOL Cantilevers in CMOS-MEMS Processes , 2017, Journal of Microelectromechanical Systems.

[11]  A. Napieralski,et al.  Design of a prototype of a 3-axis capacitive acceleration sensor , 2004, 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716).

[12]  Jordi Madrenas,et al.  CMOS BEOL-embedded z -axis accelerometer , 2015 .

[13]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[14]  N. Yazdi,et al.  Precision readout circuits for capacitive microaccelerometers , 2004, Proceedings of IEEE Sensors, 2004..

[15]  Jordi Madrenas,et al.  Experiments on the Release of CMOS-Micromachined Metal Layers , 2010, J. Sensors.

[16]  Mehmet Kaynak RF-MEMS Switch Module in a 0.25 µm SiGe:C BiCMOS Process , 2014 .

[17]  G. Abadal,et al.  Integrated CMOS-MEMS with on-chip readout electronics for high-frequency applications , 2006, IEEE Electron Device Letters.

[18]  W. Fang,et al.  Determining mean and gradient residual stresses in thin films using micromachined cantilevers , 1996 .

[19]  Jordi Madrenas,et al.  Experimental Analysis of Vapor HF Etch Rate and Its Wafer Level Uniformity on a CMOS-MEMS Process , 2016, Journal of Microelectromechanical Systems.

[20]  G. Fedder,et al.  Laminated high-aspect-ratio microstructures in a conventional CMOS process , 1996 .