A low voltage CMOS rectifier for wirelessly powered devices

This paper presents a low voltage CMOS full-wave rectifier for wirelessly powered devices. By using a simple comparator-controlled switch, the lowest input voltage amplitude can be reduced to 0.7V when using a standard CMOS 0.18μm process. With only one comparator, the proposed design dramatically reduces the production cost. In combination with unbalanced transistor scale, the proposed rectifier can achieve a maximum peak voltage conversion efficiency of more than 93% and power efficiency near to 87%.

[1]  Maurits Ortmanns,et al.  CMOS Integrated Highly Efficient Full Wave Rectifier , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[2]  T. Ohguro,et al.  The impact of scaling down to deep-submicron on CMOS RF circuits , 1998, Proceedings of the 23rd European Solid-State Circuits Conference.

[3]  Qiuting Huang,et al.  A 0.5mW passive telemetry IC for biomedical applications , 1998, Proceedings of the 23rd European Solid-State Circuits Conference.

[4]  Torsten Lehmann,et al.  On-chip active power rectifiers for biomedical applications , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[5]  Shuenn-Yuh Lee,et al.  An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Hoi Lee,et al.  An Efficiency-Enhanced CMOS Rectifier With Unbalanced-Biased Comparators for Transcutaneous-Powered High-Current Implants , 2009, IEEE Journal of Solid-State Circuits.

[7]  D. Friedman,et al.  A low-power CMOS integrated circuit for field-powered radio frequency identification tags , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[8]  Chi-Ying Tsui,et al.  Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  M. Ghovanloo,et al.  Fully integrated wideband high-current rectifiers for inductively powered devices , 2004, IEEE Journal of Solid-State Circuits.

[10]  Mohamad Sawan,et al.  Wirelessly powered and bidirectional data exchanged in smart medical microsystems , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..