FALDOI: A New Minimization Strategy for Large Displacement Variational Optical Flow

We propose a large displacement optical flow method that introduces a new strategy to compute a good local minimum of any optical flow energy functional. The method requires a given set of discrete matches, which can be extremely sparse, and an energy functional which locally guides the interpolation from those matches. In particular, the matches are used to guide a structured coordinate descent of the energy functional around these keypoints. It results in a two-step minimization method at the finest scale which is very robust to the inevitable outliers of the sparse matcher and able to capture large displacements of small objects. Its benefits over other variational methods that also rely on a set of sparse matches are its robustness against very few matches, high levels of noise, and outliers. We validate our proposal using several optical flow variational models. The results consistently outperform the coarse-to-fine approaches and achieve good qualitative and quantitative performance on the standard optical flow benchmarks.

[1]  Ying Wu,et al.  Large Displacement Optical Flow from Nearest Neighbor Fields , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[3]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[4]  Konrad Schindler,et al.  An Evaluation of Data Costs for Optical Flow , 2013, GCPR.

[5]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Horst Bischof,et al.  Motion estimation with non-local total variation regularization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Hailin Jin,et al.  Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow , 2014, CVPR.

[10]  Yunsong Li,et al.  Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[12]  Jiaolong Yang,et al.  Dense, accurate optical flow estimation with piecewise parametric model , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[14]  Didier Stricker,et al.  Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[15]  Camillo J. Taylor,et al.  Optical Flow with Geometric Occlusion Estimation and Fusion of Multiple Frames , 2015, EMMCVPR.

[16]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[17]  S. Osher,et al.  A new median formula with applications to PDE based denoising , 2009 .

[18]  Rudolf Mester,et al.  Illumination-Robust Dense Optical Flow Using Census Signatures , 2011, DAGM-Symposium.

[19]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Juho Kannala,et al.  Quasi-Dense Wide Baseline Matching Using Match Propagation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[22]  Andreas Geiger,et al.  Object scene flow for autonomous vehicles , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Rachid Deriche,et al.  Symmetrical Dense Optical Flow Estimation with Occlusions Detection , 2002, ECCV.

[24]  C. Lawrence Zitnick,et al.  Structured Forests for Fast Edge Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[25]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[26]  Cordelia Schmid,et al.  EpicFlow: Edge-preserving interpolation of correspondences for optical flow , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[28]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[29]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  Luc Van Gool,et al.  Sparse Flow: Sparse Matching for Small to Large Displacement Optical Flow , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[31]  Stefano Soatto,et al.  Sparse Occlusion Detection with Optical Flow , 2012, International Journal of Computer Vision.

[32]  Fridtjof Stein,et al.  Efficient Computation of Optical Flow Using the Census Transform , 2004, DAGM-Symposium.

[33]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[34]  Vanel A. Lazcano,et al.  A TV-L1 Optical Flow Method with Occlusion Detection , 2012, DAGM/OAGM Symposium.

[35]  Joachim Weickert,et al.  Why Is the Census Transform Good for Robust Optic Flow Computation? , 2013, SSVM.

[36]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Cristian Sminchisescu,et al.  Efficient Closed-Form Solution to Generalized Boundary Detection , 2012, ECCV.

[38]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[39]  Gloria Haro,et al.  A Rotation-Invariant Regularization Term for Optical Flow Related Problems , 2014, ACCV.

[40]  Christian Heipke,et al.  Discrete Optimization for Optical Flow , 2015, GCPR.

[41]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[42]  Thomas Pock,et al.  Non-local Total Generalized Variation for Optical Flow Estimation , 2014, ECCV.

[43]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[44]  Patrick Bouthemy,et al.  Aggregation of local parametric candidates with exemplar-based occlusion handling for optical flow , 2014, Comput. Vis. Image Underst..

[45]  Daniel Cremers,et al.  Convex Relaxation of Vectorial Problems with Coupled Regularization , 2014, SIAM J. Imaging Sci..

[46]  Antoni Buades,et al.  Reliable multi-scale and multi-window stereo matching , 2015 .

[47]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[48]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Daniel Cremers,et al.  Advanced Data Terms for Variational Optic Flow Estimation , 2009, VMV.

[50]  Lior Wolf,et al.  PatchBatch: A Batch Augmented Loss for Optical Flow , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[52]  Andrés Bruhn,et al.  Adaptive Integration of Feature Matches into Variational Optical Flow Methods , 2012, ACCV.

[53]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[54]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[55]  Vladlen Koltun,et al.  Efficient Nonlocal Regularization for Optical Flow , 2012, ECCV.

[56]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[57]  Long Quan,et al.  Match Propagation for Image-Based Modeling and Rendering , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Hans-Peter Seidel,et al.  Complementary Optic Flow , 2009, EMMCVPR.

[59]  Cristian Sminchisescu,et al.  Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation , 2013, 2013 IEEE International Conference on Computer Vision.

[60]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[61]  Agustín Salgado de la Nuez,et al.  Preserving accurate motion contours with reliable parameter selection , 2014, ICIP.

[62]  Antoni Buades,et al.  Reliable Multiscale and Multiwindow Stereo Matching , 2015, SIAM J. Imaging Sci..

[63]  Ives Rey-Otero,et al.  Anatomy of the SIFT Method , 2014, Image Process. Line.

[64]  Joachim Weickert,et al.  Morphologically Invariant Matching of Structures with the Complete Rank Transform , 2015, International Journal of Computer Vision.

[65]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[66]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.