Unifying and Visual Contents in Image

[1]  Gerald Salton,et al.  Automatic text processing , 1988 .

[2]  Yaowu Xu,et al.  Hierarchical content description and object formation by learning , 1999, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL'99).

[3]  Hsinchun Chen,et al.  A Parallel Computing Approach to Creating Engineering Concept Spaces for Semantic Retrieval: The Illinois Digital Library Initiative Project , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Shih-Fu Chang,et al.  Transform features for texture classification and discrimination in large image databases , 1994, Proceedings of 1st International Conference on Image Processing.

[5]  David A. Forsyth,et al.  Learning the semantics of words and pictures , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[6]  Thomas S. Huang,et al.  Comparing discriminating transformations and SVM for learning during multimedia retrieval , 2001, MULTIMEDIA '01.

[7]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[8]  Qiang Yang,et al.  A unified framework for semantics and feature based relevance feedback in image retrieval systems , 2000, ACM Multimedia.

[9]  T. S. Huang,et al.  Exploring the nature and variants of relevance feedback , 2001, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL 2001).

[10]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Marco La Cascia,et al.  Unifying Textual and Visual Cues for Content-Based Image Retrieval on the World Wide Web , 1999, Comput. Vis. Image Underst..