Asymptotic self‐similarity and wavelet estimation for long‐range dependent fractional autoregressive integrated moving average time series with stable innovations

Methods for parameter estimation in the presence of long-range dependence and heavy tails are scarce. Fractional autoregressive integrated moving average (FARIMA) time series for positive values of the fractional differencing exponent d can be used to model long-range dependence in the case of heavy-tailed distributions. In this paper, we focus on the estimation of the Hurst parameter H = d + 1/a for long-range dependent FARIMA time series with symmetric a-stable (1

[1]  Jean-Marc Bardet,et al.  Testing for the Presence of Self‐Similarity of Gaussian Time Series Having Stationary Increments , 2000 .

[2]  Vladas Pipiras,et al.  Estimation of the self-similarity parameter in linear fractional stable motion , 2002, Signal Process..

[3]  Michael Unser Approximation power of biorthogonal wavelet expansions , 1996, IEEE Trans. Signal Process..

[4]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[5]  A. Astrauskas Limit theorems for sums of linearly generated random variables , 1983 .

[6]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[7]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[8]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[9]  Stamatis Cambanis,et al.  Ergodic properties of stationary stable processes , 1987 .

[10]  Walter Willinger,et al.  Stock market prices and long-range dependence , 1999, Finance Stochastics.

[11]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[12]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[13]  Patrice Abry,et al.  Meaningful MRA initialization for discrete time series , 2000, Signal Process..

[14]  Patrice Abry,et al.  Stochastic integral representation and properties of the wavelet coefficients of linear fractional stable motion , 2000 .

[15]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[16]  PaxsonVern,et al.  Wide area traffic , 1994 .

[17]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[18]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[19]  M. Taqqu,et al.  Parameter estimation for infinite variance fractional ARIMA , 1996 .

[20]  S. Mallat A wavelet tour of signal processing , 1998 .

[21]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[22]  É. Moulines,et al.  Broadband log-periodogram regression of time series with long-range dependence , 1999 .

[23]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[24]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[25]  Piotr Kokoszka,et al.  Infinite variance stable moving averages with long memory , 1996 .

[26]  Florin Avram,et al.  Weak Convergence of Moving Averages with Infinite Variance , 1986 .

[27]  Piotr Kokoszka,et al.  Fractional ARIMA with stable innovations , 1995 .