Modeling Urban Landscape Dynamics Using Subpixel Fractions and Fuzzy Cellular Automata

This study proposes a fuzzy cellular automata model based on the subpixel fractions extracted from multitemporal satellite images and discusses the relationship between sophisticated remote sensing techniques and an urban process model within the socioeconomic dimension. Accordingly, the major objectives of the present research are: (1) to incorporate the subpixel membership derived from remote sensing images into a fuzzy cellular automata model to simulate urban landscape change; (2) to standardize the quantitative method to incorporate subpixel information into a subcell cellular automata model and to find a better way to determine the parameters in the model's development, calibration, and validation. The comparison between the traditional cell-based model and subcell model suggests that the subpixel technique improves the accuracy of both urban mapping and modeling using medium resolution satellite images.

[1]  S. Marsili-Libelli,et al.  Modelling the interactions between nutrients and the submersed vegetation in the Orbetello Lagoon , 2005 .

[2]  Chak-Kuen Wong,et al.  A parallelized genetic algorithm for the calibration of Lowry model , 2001, Parallel Comput..

[3]  Suzana Dragicevic,et al.  A fuzzy-constrained cellular automata model of forest insect infestations , 2006 .

[4]  P. Prastacos,et al.  Modeling Urban Growth using Fuzzy Cellular Automata , 2008 .

[5]  Thomas Hatzichristos,et al.  A Fuzzy Cellular Automata Based Shell for Modeling Urban Growth – A Pilot Application in Mesogia Area , 2007 .

[6]  Kyushik Oh,et al.  The Usefulness of the GIS—Fuzzy Set Approach in Evaluating the Urban Residential Environment , 2002 .

[7]  Xia Li,et al.  Simulating complex urban development using kernel-based non-linear cellular automata , 2008 .

[8]  Michael Batty,et al.  From Cells to Cities , 1994 .

[9]  Le Wang,et al.  Improving urban classification through fuzzy supervised classification and spectral mixture analysis , 2007 .

[10]  D. Sui,et al.  Modeling the dynamics of landscape structure in Asia's emerging desakota regions : a case study in Shenzhen , 2001 .

[11]  Miha Mraz,et al.  Intelligent bush fire spread prediction using fuzzy cellular automata , 1999, J. Intell. Fuzzy Syst..

[12]  S. Dragićević,et al.  Coupling fuzzy sets theory and GIS-based cellular automata for land-use change modeling , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[13]  Michael Batty,et al.  Predicting Temporal Pattern in Urban Development from Remote Imagery , 2001 .

[14]  Vincent B. Robinson Using fuzzy spatial relations to control movement behavior of mobile objects in spatially explicit ecological models , 2002 .

[15]  Xia Li,et al.  Discovering and evaluating urban signatures for simulating compact development using cellular automata , 2008 .

[16]  Linda See,et al.  Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia , 2009 .

[17]  Tarmo K. Remmel,et al.  On the role of spatial stochastic models in understanding landscape indices in ecology , 2003 .

[18]  R. Gil Pontius,et al.  Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica , 2001 .

[19]  Jie Shan,et al.  Genetic Algorithms for the Calibration of Cellular Automata Urban Growth Modeling , 2008 .

[20]  S. An,et al.  The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China , 2007, Landscape Ecology.

[21]  M. Turner Spatial simulation of landscape changes in Georgia: A comparison of 3 transition models , 1987, Landscape Ecology.

[22]  Linda See,et al.  A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia. Part 2: Scenario Testing , 2009 .

[23]  Fangju Wang,et al.  Comparison of Boolean and Fuzzy Classification Methods in Land Suitability Analysis by Using Geographical Information Systems , 1992 .

[24]  Vincent B. Robinson,et al.  A Perspective on the Fundamentals of Fuzzy Sets and their Use in Geographic Information Systems , 2003, Trans. GIS.

[25]  G. Rabino,et al.  Learning Urban Cellular Automata In A Real World , 1998 .

[26]  L. P. C. Verbeke,et al.  Using genetic algorithms in sub-pixel mapping , 2003 .

[27]  A. Heppenstall,et al.  A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia. Part 1: Model Structure and Validation , 2009 .

[28]  F. Wu,et al.  Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system , 1998 .

[29]  Stan Openshaw,et al.  Building Fuzzy Spatial Interaction Models , 1997 .

[30]  Jacek Andrzej Urbanski The use of fuzzy sets in the evaluation of the environment of coastal waters , 1999, Int. J. Geogr. Inf. Sci..

[31]  Alan T. Murray,et al.  Estimating impervious surface distribution by spectral mixture analysis , 2003 .

[32]  Chris Webster,et al.  Simulation of natural land use zoning under free-market and incremental development control regimes , 1998 .

[33]  Xia Li,et al.  Modelling sustainable urban development by the integration of constrained cellular automata and GIS , 2000, Int. J. Geogr. Inf. Sci..

[34]  Junmei Tang,et al.  Analyses of urban landscape dynamics using multi-temporal satellite images: A comparison of two petroleum-oriented cities , 2008 .

[35]  Richard J. Balling,et al.  Multiobjective Urban Planning Using Genetic Algorithm , 1999 .

[36]  Qihao Weng Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. , 2002, Journal of environmental management.

[37]  Suzana Dragicevic,et al.  Space, Time, and Dynamics Modeling in Historical GIS Databases: A Fuzzy Logic Approach , 2001 .

[38]  Graham Wood,et al.  Fuzzy Sets and Simulated Environmental Change: Evaluating and Communicating Impact Significance in Environmental Impact Assessment , 2007 .

[39]  M. Turner,et al.  LANDSCAPE ECOLOGY : The Effect of Pattern on Process 1 , 2002 .

[40]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[41]  Keith C. Clarke,et al.  Loose-Coupling a Cellular Automaton Model and GIS: Long-Term Urban Growth Prediction for San Francisco and Washington/Baltimore , 1998, Int. J. Geogr. Inf. Sci..

[42]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[43]  Stuart R. Phinn,et al.  Modelling urban development with cellular automata incorporating fuzzy-set approaches , 2003, Comput. Environ. Urban Syst..

[44]  David Altman,et al.  Fuzzy Set Theoretic Approaches for Handling Imprecision in Spatial Analysis , 1994, Int. J. Geogr. Inf. Sci..

[45]  Suzana Dragicevic,et al.  A fuzzy set approach for modelling time in GIS , 2000, Int. J. Geogr. Inf. Sci..

[46]  Jianguo Wu,et al.  Modeling urban landscape dynamics: A review , 2004, Ecological Research.

[47]  Brian L. Markham,et al.  Thematic Mapper bandpass solar exoatmospheric irradiances , 1987 .

[48]  Martin Herold,et al.  The spatiotemporal form of urban growth: measurement, analysis and modeling , 2003 .

[49]  W. Baker A review of models of landscape change , 1989, Landscape Ecology.

[50]  E. Heikkila,et al.  Fuzzy Urban Sets: Theory and Application to Desakota Regions in China , 2003 .

[51]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[52]  Noah Goldstein,et al.  Brains Vs. Brawn – Comparative Strategies For The Calibration Of A Cellular Automata – Based Urban Growth Model , 2003 .

[53]  Junmei Tang,et al.  Spatio‐temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm , 2007 .

[54]  David Martin,et al.  Urban Expansion Simulation of Southeast England Using Population Surface Modelling and Cellular Automata , 2002 .

[55]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[56]  S. Bornholdt Genetic algorithm dynamics on a rugged landscape , 1998, cond-mat/9903076.

[57]  F. Wang Improving remote sensing image analysis through fuzzy information representation , 1990 .

[58]  W. B. Clapham Continuum-based classification of remotely sensed imagery to describe urban sprawl on a watershed scale , 2003 .

[59]  G. Foody,et al.  A fuzzy classification of sub-urban land cover from remotely sensed imagery , 1998 .