SOLVABLE AFFINE TERM STRUCTURE MODELS

An Affine Term Structure Model (ATSM) is said to be solvable if the pricing problem has an explicit solution, i.e., the corresponding Riccati ordinary differential equations have a regular globally integrable flow. We identify the parametric restrictions which are necessary and sufficient for an ATSM with continuous paths, to be solvable in a state space , where , the domain of positive factors, has the geometry of a symmetric cone. This class of state spaces includes as special cases those introduced by Duffie and Kan (1996) , and Wishart term structure processes discussed by Gourieroux and Sufana (2003) . For all solvable models we provide the procedure to find the explicit solution of the Riccati ODE.

[1]  Jimmie D. Lawson,et al.  The Symplectic Semigroup and Riccati Differential Equations , 2006 .

[2]  D. Filipović Time-inhomogeneous affine processes , 2005 .

[3]  C. Tebaldi,et al.  Bond Price and Impulse Response Function for the Balduzzi, Das, Foresi and Sundaram (1996) Model , 2004 .

[4]  A. Hindy,et al.  A Yield-factor Model of Interest Rates We Are Grateful for Discussions With , 2004 .

[5]  C. Gouriéroux,et al.  Wishart Quadratic Term Structure Models , 2003 .

[6]  Damir Filipović,et al.  EXISTENCE OF INVARIANT MANIFOLDS FOR STOCHASTIC EQUATIONS IN INFINITE DIMENSION , 2003 .

[7]  O. Scaillet,et al.  Linear-Quadratic Jump-Diffusion Modelling with Application to Stochastic Volatility , 2002 .

[8]  Damir Filipović,et al.  SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM , 2002 .

[9]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[10]  Gerhard Freiling,et al.  A survey of nonsymmetric Riccati equations , 2002 .

[11]  Markus Leippold,et al.  Design and Estimation of Quadratic Term Structure Models , 2002 .

[12]  Robert J. Elliott,et al.  Stochastic flows and the forward measure , 2001, Finance Stochastics.

[13]  J. Oteo,et al.  Convergence of the exponential Lie series , 2001 .

[14]  Y. Lim,et al.  Lie semigroups with triple decompositions , 2000 .

[15]  D. Madan,et al.  Spanning and Derivative-Security Valuation , 2000 .

[16]  G. Marmo,et al.  THE NONLINEAR SUPERPOSITION PRINCIPLE AND THE WEI-NORMAN METHOD , 1998, physics/9802041.

[17]  K. Singleton,et al.  Specification Analysis of Affine Term Structure Models , 1997 .

[18]  R. Sundaram,et al.  A Simple Approach to Three-Factor Affine Term Structure Models , 1996 .

[19]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[20]  D. Duffie,et al.  A YIELD-FACTOR MODEL OF INTEREST RATES , 1996 .

[21]  S. Lafortune,et al.  Superposition formulas for pseudounitary matrix Riccati equations , 1996 .

[22]  D. Duffie,et al.  A Yield-factor Model of Interest Rates , 1996 .

[23]  S. Schaefer,et al.  Interest rate volatility and the shape of the term structure , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[24]  S. Walcher Algebras and differential equations , 1991 .

[25]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[26]  S. Walcher Über polynomiale, insbesondere Riccatische, Differentialgleichungen mit Fundamentallösungen , 1986 .

[27]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[28]  W. Reid,et al.  Riccati Differential Equations , 1975, IEEE Transactions on Systems, Man, and Cybernetics.