BULK VISCOUS FRW COSMOLOGY IN LYRA GEOMETRY

We have studied an isotropic homogeneous FRW universe in the presence of a bulk viscous fluid within the framework of Lyra's geometry. We have obtained exact solutions of the Sen equations assuming the deceleration parameter to be constant. The coefficient of bulk viscosity has been assumed to be a power function of the mass density. With this assumption, we have considered the behavior of the displacement field and the energy density for both power-law and exponential expansions of the universe. We show that our models are generalised and we obtain the results of previous works by considering k=0 and k=-1.

[1]  Kalyani Desikan,et al.  A new class of cosmological models in Lyra geometry , 1997 .

[2]  D. Pavón,et al.  Dark matter and dissipation , 1993 .

[3]  T. Singh,et al.  Lyra's Geometry and Cosmology: A Review , 1993 .

[4]  G. Singh,et al.  Bianchi type‐I cosmological models in Lyra’s geometry , 1991 .

[5]  T. Singh,et al.  Some cosmological models with constant deceleration parameter , 1991 .

[6]  A. Coley,et al.  Conformal Killing vectors and FRW spacetimes , 1990 .

[7]  H. Goenner,et al.  Exact anisotropic viscous fluid solutions of Einstein's equations , 1989 .

[8]  R. Sudharsan,et al.  BD-FRW Cosmology with Bulk Viscosity , 1989 .

[9]  J. Barrow String-Driven Inflationary and Deflationary Cosmological Models , 1988 .

[10]  N. Turok,et al.  String-driven inflation. , 1987, Physical review letters.

[11]  H. Soleng Cosmologies based on Lyra's geometry , 1987 .

[12]  D. Reddy,et al.  Birkhoff-type theorem in the scale-covariant theory of gravitation , 1987 .

[13]  A. Beesham Vacuum friedmann cosmology based on Lyra's manifold , 1986 .

[14]  D. Reddy,et al.  A plane symmetric cosmological model in Lyra manifold , 1986 .

[15]  Y. S. Myung,et al.  ENTROPY PRODUCTION IN A HOT HETEROTIC STRING , 1986 .

[16]  R. Dias,et al.  Isotropic homogeneous universe with viscous fluid , 1985 .

[17]  B. B. Waghmode,et al.  A static cosmological model in Einstein-Cartan theory , 1982 .

[18]  T. Karade,et al.  Thermodynamic equilibrium of a gravitating sphere in Lyra's geometry , 1978 .

[19]  K. Bhamra A Cosmological Model of Class One in Lyra's Manifold , 1974 .

[20]  G. Murphy Big-Bang Model Without Singularities , 1973 .

[21]  R. D. Murphy,et al.  Radial distribution function of liquid sodium , 1973 .

[22]  W. Halford Scalar‐Tensor Theory of Gravitation in a Lyra Manifold , 1972 .

[23]  K. Dunn,et al.  A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold , 1971 .

[24]  Steven Weinberg,et al.  Entropy generation and the survival of protogalaxies in an expanding universe , 1971 .

[25]  W. Halford COSMOLOGICAL THEORY BASED ON LYRA'S GEOMETRY. , 1970 .

[26]  C. Misner The Isotropy of the universe , 1968 .

[27]  F. Hoyle,et al.  Mach’s principle and the creation of matter , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  D. Sen A static cosmological model , 1957 .

[29]  G. Lyra Über eine Modifikation der Riemannschen Geometrie , 1951 .

[30]  T. Gold,et al.  The Steady-State Theory of the Expanding Universe , 1948 .