Super-resolving phase measurements with a multiphoton entangled state

Interference phenomena are ubiquitous in physics, often forming the basis of demanding measurements. Examples include Ramsey interferometry in atomic spectroscopy, X-ray diffraction in crystallography and optical interferometry in gravitational-wave studies. It has been known for some time that the quantum property of entanglement can be exploited to perform super-sensitive measurements, for example in optical interferometry or atomic spectroscopy. The idea has been demonstrated for an entangled state of two photons, but for larger numbers of particles it is difficult to create the necessary multiparticle entangled states. Here we demonstrate experimentally a technique for producing a maximally entangled three-photon state from initially non-entangled photons. The method can in principle be applied to generate states of arbitrary photon number, giving arbitrarily large improvement in measurement resolution. The method of state construction requires non-unitary operations, which we perform using post-selected linear-optics techniques similar to those used for linear-optics quantum computing.

[1]  Marco Lops,et al.  The Virgo interferometer , 1997 .

[2]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[4]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[5]  Marek Zukowski,et al.  Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. , 2003, Physical review letters.

[6]  Ou,et al.  Violation of Bell's inequality and classical probability in a two-photon correlation experiment. , 1988, Physical review letters.

[7]  Barry C. Sanders,et al.  Optimal quantum measurements for phase-shift estimation in optical interferometry , 1997 .

[8]  L. Marton,et al.  Electron beam interferometer , 1953 .

[9]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[10]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[11]  Tadashi Itoh,et al.  Measurement of the photonic de broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. , 2002, Physical review letters.

[12]  S. Takeuchi,et al.  Beamlike twin-photon generation by use of type II parametric downconversion. , 2001, Optics letters.

[13]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[14]  Christopher C. Gerry,et al.  Generation of maximally entangled photonic states with a quantum-optical Fredkin gate , 2001 .

[15]  Shih,et al.  New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. , 1988, Physical review letters.

[16]  Y. Yamamoto,et al.  Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. , 2001, Physical review letters.

[17]  Teich,et al.  Two-photon interference in a Mach-Zehnder interferometer. , 1990, Physical review letters.

[18]  Holger F. Hofmann Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck , 2004 .

[19]  A. Zeilinger,et al.  Multiparticle Interferometry and the Superposition Principle , 1993 .

[20]  H. Weinfurter,et al.  Four-photon entanglement from down-conversion , 2001, quant-ph/0103049.

[21]  Aephraim M. Steinberg,et al.  Conditional-phase switch at the single-photon level. , 2002, Physical review letters.

[22]  Keith,et al.  An interferometer for atoms. , 1991, Physical review letters.

[23]  Jacobson,et al.  Photonic de Broglie waves. , 1995, Physical review letters.

[24]  Ou,et al.  Experiment on nonclassical fourth-order interference. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[26]  B. Barish,et al.  LIGO and the Detection of Gravitational Waves , 1999 .

[27]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[28]  Christopher C. Gerry,et al.  Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements , 2003 .

[29]  D. Bouwmeester,et al.  Stimulated emission of polarization-entangled photons , 2001, Nature.

[30]  Carlos H. Monken,et al.  Measurement of the de Broglie Wavelength of a Multiphoton Wave Packet , 1999 .

[31]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[32]  Colin P. Williams,et al.  Quantum-interferometric optical lithography: Towards arbitrary two-dimensional patterns , 2001 .

[33]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[34]  M D'Angelo,et al.  Two-photon diffraction and quantum lithography. , 2001, Physical review letters.

[35]  Yurke Input states for enhancement of fermion interferometer sensitivity. , 1986, Physical review letters.

[36]  J D Franson,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[37]  Z. Y. Ou,et al.  FUNDAMENTAL QUANTUM LIMIT IN PRECISION PHASE MEASUREMENT , 1997 .

[38]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[39]  Jonathan P. Dowling,et al.  Creation of large-photon-number path entanglement conditioned on photodetection , 2001, quant-ph/0112002.

[40]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[41]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[42]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[43]  Carlton M. Caves,et al.  Detection of gravitational waves , 2000 .

[44]  U. Bonse,et al.  Test of a single crystal neutron interferometer , 1974 .

[45]  A. G. White,et al.  Creation of maximally entangled photon-number states using optical fiber multiports , 2003, quant-ph/0304135.

[46]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[47]  Aephraim M. Steinberg,et al.  Diagnosis, prescription, and prognosis of a bell-state filter by quantum process tomography. , 2003, Physical review letters.

[48]  P R Tapster,et al.  Non-classical interference between independent sources , 1997 .

[49]  John Rarity,et al.  THREE-PARTICLE ENTANGLEMENT FROM ENTANGLED PHOTON PAIRS AND A WEAK COHERENT STATE , 1999 .

[50]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[51]  Ou,et al.  Evidence for phase memory in two-photon down conversion through entanglement with the vacuum. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[52]  Jian-Wei Pan,et al.  Polarization entanglement purification using spatial entanglement. , 2001, Physical review letters.

[53]  J. Fiurášek Conditional generation of N -photon entangled states of light , 2001, quant-ph/0110138.