A 1.33 $\mu{\rm W}$ 8.02-ENOB 100 kS/s Successive Approximation ADC With Supply Reduction Technique for Implantable Retinal Prosthesis

This paper presents a chip level 9 bits Charge Folding Successive-Approximation-Register (SAR) Analog-to-Digital Converter (ADC) to be used in a CMOS image sensor for retinal prosthesis. It has a maximum single-ended input range of 1.8 V but only uses a supply voltage of 0.9 V for the entire ADC through the Charge Folding method. Therefore, the input range is no longer limited by the supply rail as in conventional SAR ADC. Moreover, the ADC is controlled by an internal delay line based Asynchronous Clock Generator which can be programmed to adjust the resolution of the ADC from 5 to 9 bits. Therefore, resolution adaptation function can be applied to improve the energy efficiency up to 15%. The test chip is implemented in 0.18 μm CMOS process and occupies an area of 0.15 mm2. At 0.9 V and 100 kS/s, the 9 bit s ADC consumes 1.33 μW and achieves an energy efficiency of 51.3 fJ/conversion-step . In addition, the power consumption can be further reduced by scaling the supply voltage and sampling frequency. At 100 kS/s, this ADC is capable of converting the input signal at a rate equivalent to 30 frames/s for a pixel array up to 3200 pixels.

[1]  Hong-June Park,et al.  A 1.3μW 0.6V 8.7-ENOB successive approximation ADC in a 0.18μm CMOS , 2009, 2009 Symposium on VLSI Circuits.

[2]  Soon-Jyh Chang,et al.  A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.

[3]  Ameya Bhide,et al.  A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-$\mu$m CMOS for Medical Implant Devices , 2012, IEEE Journal of Solid-State Circuits.

[4]  Stuart F. Cogan,et al.  Photodiode Circuits for Retinal Prostheses , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Eisse Mensink,et al.  A Low-Offset Double-Tail Latch-Type Voltage Sense Amplifier , 2007 .

[6]  A. Bermak,et al.  An 84 pW/Frame Per Pixel Current-Mode CMOS Image Sensor With Energy Harvesting Capability , 2012, IEEE Sensors Journal.

[7]  Eric A. M. Klumperink,et al.  A 10-bit Charge-Redistribution ADC Consuming 1.9 $\mu$W at 1 MS/s , 2010, IEEE Journal of Solid-State Circuits.

[8]  Anantha Chandrakasan,et al.  A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications , 2013, IEEE Journal of Solid-State Circuits.

[9]  Thomas Stieglitz,et al.  An Optically Powered Single-Channel Stimulation Implant as Test System for Chronic Biocompatibility and Biostability of Miniaturized Retinal Vision Prostheses , 2007, IEEE Transactions on Biomedical Engineering.

[10]  Howard Tang,et al.  An energy recovery approach for a charge redistribution successive approximation ADC , 2010, 2010 International Conference on Microelectronics.

[11]  J.N. Burghartz,et al.  High Dynamic Range CMOS Imager Technologies for Biomedical Applications , 2009, IEEE Journal of Solid-State Circuits.

[12]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[13]  C.-K.K. Yang,et al.  Offset compensation in comparators with minimum input-referred supply noise , 2004, IEEE Journal of Solid-State Circuits.

[14]  Franco Maloberti,et al.  A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[15]  S. Kawahito,et al.  A Wide-Dynamic-Range CMOS Image Sensor Based on Multiple Short Exposure-Time Readout With Multiple-Resolution Column-Parallel ADC , 2007, IEEE Sensors Journal.

[16]  Franco Maloberti,et al.  A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[17]  Teresa H. Y. Meng,et al.  Adaptive Resolution ADC Array for an Implantable Neural Sensor , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[18]  J. Wyatt,et al.  Minimally Invasive Retinal Prosthesis , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[19]  David Blaauw,et al.  A 0.5 V Sub-Microwatt CMOS Image Sensor With Pulse-Width Modulation Read-Out , 2010, IEEE Journal of Solid-State Circuits.

[20]  Suat U. Ay,et al.  A CMOS Energy Harvesting and Imaging (EHI) Active Pixel Sensor (APS) Imager for Retinal Prosthesis , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[21]  Beiju Huang,et al.  A CMOS chip with active imaging and stimulation pixels for implantable retinal prosthesis , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).

[22]  Amine Bermak,et al.  Pulse-Modulation Imaging—Review and Performance Analysis , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[23]  T. Nirschl,et al.  Yield and speed optimization of a latch-type voltage sense amplifier , 2004, IEEE Journal of Solid-State Circuits.

[24]  Chih-Cheng Hsieh,et al.  A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[25]  Hongxing Li,et al.  Statistical analysis on the effect of capacitance mismatch in a high‐resolution successive‐approximation ADC , 2011 .

[26]  Arthur H. M. van Roermund,et al.  A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step , 2013, IEEE Journal of Solid-State Circuits.

[27]  Howard Tang,et al.  Analog-to-Digital Converter with energy recovery capability using adiabatic technique , 2010, 2010 IEEE Asia Pacific Conference on Circuits and Systems.

[28]  Suat U. Ay,et al.  A low voltage, energy efficient supply boosted SAR ADC for biomedical applications , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[29]  Suat U. Ay,et al.  Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.

[30]  Hao-Chiao Hong,et al.  A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC , 2007, IEEE Journal of Solid-State Circuits.

[31]  Amine Bermak,et al.  A CMOS image sensor with reconfigurable resolution for energy harvesting applications , 2009, 2009 IEEE Sensors.

[32]  A. Kemna,et al.  An AMR sensor-based measurement system for magnetoelectrical resistivity tomography , 2005, IEEE Sensors Journal.

[33]  Daniel Palanker,et al.  Photovoltaic retinal prosthesis , 2011, BiOS.

[34]  Mark A. Tarbell,et al.  Image processing and interface for retinal visual prostheses , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[35]  Jun Ohta,et al.  Development and in vivo Demonstration of CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite Stimulation Capability , 2010, IEEE Transactions on Biomedical Circuits and Systems.