A 1.33 $\mu{\rm W}$ 8.02-ENOB 100 kS/s Successive Approximation ADC With Supply Reduction Technique for Implantable Retinal Prosthesis
暂无分享,去创建一个
[1] Hong-June Park,et al. A 1.3μW 0.6V 8.7-ENOB successive approximation ADC in a 0.18μm CMOS , 2009, 2009 Symposium on VLSI Circuits.
[2] Soon-Jyh Chang,et al. A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure , 2010, IEEE Journal of Solid-State Circuits.
[3] Ameya Bhide,et al. A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-$\mu$m CMOS for Medical Implant Devices , 2012, IEEE Journal of Solid-State Circuits.
[4] Stuart F. Cogan,et al. Photodiode Circuits for Retinal Prostheses , 2011, IEEE Transactions on Biomedical Circuits and Systems.
[5] Eisse Mensink,et al. A Low-Offset Double-Tail Latch-Type Voltage Sense Amplifier , 2007 .
[6] A. Bermak,et al. An 84 pW/Frame Per Pixel Current-Mode CMOS Image Sensor With Energy Harvesting Capability , 2012, IEEE Sensors Journal.
[7] Eric A. M. Klumperink,et al. A 10-bit Charge-Redistribution ADC Consuming 1.9 $\mu$W at 1 MS/s , 2010, IEEE Journal of Solid-State Circuits.
[8] Anantha Chandrakasan,et al. A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications , 2013, IEEE Journal of Solid-State Circuits.
[9] Thomas Stieglitz,et al. An Optically Powered Single-Channel Stimulation Implant as Test System for Chronic Biocompatibility and Biostability of Miniaturized Retinal Vision Prostheses , 2007, IEEE Transactions on Biomedical Engineering.
[10] Howard Tang,et al. An energy recovery approach for a charge redistribution successive approximation ADC , 2010, 2010 International Conference on Microelectronics.
[11] J.N. Burghartz,et al. High Dynamic Range CMOS Imager Technologies for Biomedical Applications , 2009, IEEE Journal of Solid-State Circuits.
[12] P. R. Gray,et al. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.
[13] C.-K.K. Yang,et al. Offset compensation in comparators with minimum input-referred supply noise , 2004, IEEE Journal of Solid-State Circuits.
[14] Franco Maloberti,et al. A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.
[15] S. Kawahito,et al. A Wide-Dynamic-Range CMOS Image Sensor Based on Multiple Short Exposure-Time Readout With Multiple-Resolution Column-Parallel ADC , 2007, IEEE Sensors Journal.
[16] Franco Maloberti,et al. A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[17] Teresa H. Y. Meng,et al. Adaptive Resolution ADC Array for an Implantable Neural Sensor , 2011, IEEE Transactions on Biomedical Circuits and Systems.
[18] J. Wyatt,et al. Minimally Invasive Retinal Prosthesis , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.
[19] David Blaauw,et al. A 0.5 V Sub-Microwatt CMOS Image Sensor With Pulse-Width Modulation Read-Out , 2010, IEEE Journal of Solid-State Circuits.
[20] Suat U. Ay,et al. A CMOS Energy Harvesting and Imaging (EHI) Active Pixel Sensor (APS) Imager for Retinal Prosthesis , 2011, IEEE Transactions on Biomedical Circuits and Systems.
[21] Beiju Huang,et al. A CMOS chip with active imaging and stimulation pixels for implantable retinal prosthesis , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).
[22] Amine Bermak,et al. Pulse-Modulation Imaging—Review and Performance Analysis , 2011, IEEE Transactions on Biomedical Circuits and Systems.
[23] T. Nirschl,et al. Yield and speed optimization of a latch-type voltage sense amplifier , 2004, IEEE Journal of Solid-State Circuits.
[24] Chih-Cheng Hsieh,et al. A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.
[25] Hongxing Li,et al. Statistical analysis on the effect of capacitance mismatch in a high‐resolution successive‐approximation ADC , 2011 .
[26] Arthur H. M. van Roermund,et al. A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step , 2013, IEEE Journal of Solid-State Circuits.
[27] Howard Tang,et al. Analog-to-Digital Converter with energy recovery capability using adiabatic technique , 2010, 2010 IEEE Asia Pacific Conference on Circuits and Systems.
[28] Suat U. Ay,et al. A low voltage, energy efficient supply boosted SAR ADC for biomedical applications , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).
[29] Suat U. Ay,et al. Supply boosting technique for designing very low-voltage mixed-signal circuits in standard CMOS , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.
[30] Hao-Chiao Hong,et al. A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC , 2007, IEEE Journal of Solid-State Circuits.
[31] Amine Bermak,et al. A CMOS image sensor with reconfigurable resolution for energy harvesting applications , 2009, 2009 IEEE Sensors.
[32] A. Kemna,et al. An AMR sensor-based measurement system for magnetoelectrical resistivity tomography , 2005, IEEE Sensors Journal.
[33] Daniel Palanker,et al. Photovoltaic retinal prosthesis , 2011, BiOS.
[34] Mark A. Tarbell,et al. Image processing and interface for retinal visual prostheses , 2005, 2005 IEEE International Symposium on Circuits and Systems.
[35] Jun Ohta,et al. Development and in vivo Demonstration of CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite Stimulation Capability , 2010, IEEE Transactions on Biomedical Circuits and Systems.