Microdiesel: Escherichia coli engineered for fuel production.

Biodiesel is an alternative energy source and a substitute for petroleum-based diesel fuel. It is produced from renewable biomass by transesterification of triacylglycerols from plant oils, yielding monoalkyl esters of long-chain fatty acids with short-chain alcohols such as fatty acid methyl esters and fatty acid ethyl esters (FAEEs). Despite numerous environmental benefits, a broader use of biodiesel is hampered by the extensive acreage required for sufficient production of oilseed crops. Therefore, processes are urgently needed to enable biodiesel production from more readily available bulk plant materials like sugars or cellulose. Toward this goal, the authors established biosynthesis of biodiesel-adequate FAEEs, referred to as Microdiesel, in metabolically engineered Escherichia coli. This was achieved by heterologous expression in E. coli of the Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase and the unspecific acyltransferase from Acinetobacter baylyi strain ADP1. By this approach, ethanol formation was combined with subsequent esterification of the ethanol with the acyl moieties of coenzyme A thioesters of fatty acids if the cells were cultivated under aerobic conditions in the presence of glucose and oleic acid. Ethyl oleate was the major constituent of these FAEEs, with minor amounts of ethyl palmitate and ethyl palmitoleate. FAEE concentrations of 1.28 g l(-1) and a FAEE content of the cells of 26 % of the cellular dry mass were achieved by fed-batch fermentation using renewable carbon sources. This novel approach might pave the way for industrial production of biodiesel equivalents from renewable resources by employing engineered micro-organisms, enabling a broader use of biodiesel-like fuels in the future.

[1]  A. Steinbüchel,et al.  Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters , 2006, Applied and Environmental Microbiology.

[2]  A. Steinbüchel,et al.  Triacylglycerols in prokaryotic microorganisms , 2002, Applied Microbiology and Biotechnology.

[3]  A. Steinbüchel,et al.  Thio Wax Ester Biosynthesis Utilizing the Unspecific Bifunctional Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase of Acinetobacter sp. Strain ADP1 , 2005, Applied and Environmental Microbiology.

[4]  P. Cunningham,et al.  Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. , 1989, Gene.

[5]  A. Steinbüchel,et al.  The Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase from Acinetobacter sp. Strain ADP1: Characterization of a Novel Type of Acyltransferase , 2005, Journal of bacteriology.

[6]  L. Ingram,et al.  Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli , 1989, Applied and environmental microbiology.

[7]  Rainer Kalscheuer,et al.  Synthesis of Novel Lipids in Saccharomyces cerevisiae by Heterologous Expression of an Unspecific Bacterial Acyltransferase , 2004, Applied and Environmental Microbiology.

[8]  A. Steinbüchel,et al.  In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl‐CoA:diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1 , 2003 .

[9]  L. Ingram,et al.  Genetic engineering of ethanol production in Escherichia coli , 1987, Applied and environmental microbiology.

[10]  J. Knappe,et al.  Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. , 1992, The Journal of biological chemistry.

[11]  A. Steinbüchel,et al.  A Novel Bifunctional Wax Ester Synthase/Acyl-CoA:Diacylglycerol Acyltransferase Mediates Wax Ester and Triacylglycerol Biosynthesis inAcinetobacter calcoaceticus ADP1* , 2003, The Journal of Biological Chemistry.

[12]  Andrew D. Jones,et al.  Supporting Online Material for: Ethanol Can Contribute To Energy and Environmental Goals , 2006 .

[13]  Mario Vaneechoutte,et al.  Naturally Transformable Acinetobacter sp. Strain ADP1 Belongs to the Newly Described Species Acinetobacter baylyi , 2006, Applied and Environmental Microbiology.

[14]  T. W. Jeffries,et al.  Bacteria engineered for fuel ethanol production: current status , 2003, Applied Microbiology and Biotechnology.

[15]  J. Nielsen,et al.  Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration , 2001, Applied Microbiology and Biotechnology.

[16]  L. Ingram,et al.  Construction and expression of an ethanol production operon in Gram-positive bacteria. , 2005, Microbiology.

[17]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .