One-step synthesis and densification uniform BaZr0.1Ce0.7Y0.1Yb0.1O3-δ by step-wise current reactive flash sintering

[1]  Zongping Shao,et al.  Perovskites for protonic ceramic fuel cells: a review , 2022, Energy & Environmental Science.

[2]  Q. Tian,et al.  Rapid preparation of Bi0.5Na0.5TiO3 ceramics by reactive flash sintering of Bi2O3-NaCO3-TiO2 mixed powders , 2021, Journal of the European Ceramic Society.

[3]  Zhenhua Wang,et al.  Fluorinated Pr2NiO4+δ as high-performance air electrode for tubular reversible protonic ceramic cells , 2021 .

[4]  İ. Şavklıyıldız,et al.  Flash sintering and dielectric properties of K 0.5 Na 0.5 NbO 3 , 2021, Journal of the American Ceramic Society.

[5]  Xinfang Zhang,et al.  Pressure‐assisted flash sintering of ZnO ceramics , 2021, Journal of the American Ceramic Society.

[6]  Meng Zhou,et al.  Regulation of Cathode Mass and Charge Transfer by Structural 3D Engineering for Protonic Ceramic Fuel Cell at 400 °C , 2021, Advanced Functional Materials.

[7]  O. Guillon,et al.  Development of a processing map for safe flash sintering of gadolinium‐doped ceria , 2021, Journal of the American Ceramic Society.

[8]  Takahisa Yamamoto,et al.  Near complete densification of flash sintered 8YSZ: controlled shrinkage rate effects , 2021, Journal of the European Ceramic Society.

[9]  H. Sumi,et al.  Enhanced La0.6Sr0.4Co0.2Fe0.8O3–-based cathode performance by modification of BaZr0.1Ce0.7Y0.1Yb0.1O3– electrolyte surface in protonic ceramic fuel cells , 2021 .

[10]  J. Maier,et al.  Effects of NiO addition on sintering and proton uptake of Ba(Zr,Ce,Y)O3−δ , 2021, Journal of Materials Chemistry A.

[11]  P. Shen,et al.  Ultrafast densification of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by reactive flash sintering , 2020 .

[12]  Yiguang Wang,et al.  Flash sintering of yttria-stabilized zirconia: Fundamental understanding and applications , 2020 .

[13]  R. Chaim Reactive flash sintering (RFS) in oxide systems: kinetics and thermodynamics , 2020, Journal of Materials Science.

[14]  Shao-Long Wang,et al.  Enhancing the flash-sinterability of BaZr0.1Ce0.7Y0.2O3-δ proton-conducting electrolyte by nickel oxide doping for possible application in SOFCs , 2020 .

[15]  Zhenzhong Sun,et al.  Fabrication of high-entropy perovskite oxide by reactive flash sintering , 2020 .

[16]  Zhenhua Wang,et al.  An easily controllable flash sintering process for densification of electrolyte for application in solid oxide fuel cells , 2020 .

[17]  Julieta A. Ferreira,et al.  Microstructural evolution of 3YSZ flash‐sintered with current ramp control , 2020 .

[18]  Dingbiao Wang,et al.  Review of cell performance in solid oxide fuel cells , 2020, Journal of Materials Science.

[19]  R. Raj,et al.  Reactive flash sintering of the complex oxide Li0.5La0.5TiO3 starting from an amorphous precursor powder , 2020 .

[20]  M. H. Paydar,et al.  Investigation on flash sintering of BaZr0.1Ce0.7Y0.2O3-δ compound; using nickel wire as electrode material , 2020 .

[21]  T. He,et al.  Enhancing the sinterability and electrical properties of BaZr 0.1 Ce 0.7 Y 0.2 O 3‐δ proton‐conducting ceramic electrolyte , 2020 .

[22]  Sun-Ju Song,et al.  Determination of partial conductivities and computational analysis of the theoretical power density of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ(BZCYYb1711) electrolyte under various PCFC conditions , 2019, Journal of Materials Chemistry A.

[23]  J. Okasinski,et al.  Direct in situ observation of electric field assisted densification of ZnO by energy dispersive X-ray diffraction , 2019, Ceramics International.

[24]  Han Wang,et al.  Comparison of the grain growth behavior and defect structures of flash sintered ZnO with and without controlled current ramp , 2019, Scripta Materialia.

[25]  V. Sglavo,et al.  Flash sintering of ceramics , 2019, Journal of the European Ceramic Society.

[26]  Bin Wang,et al.  Exploring the role of NiO as a sintering aid in BaZr0.1Ce0.7Y0.2O3-δ electrolyte for proton-conducting solid oxide fuel cells , 2018, Journal of Power Sources.

[27]  T. Tsakalakos,et al.  Flash Sintering using Controlled Current Ramp , 2018, Journal of the European Ceramic Society.

[28]  Donglin Han,et al.  Transport properties of proton conductive Y-doped BaHfO3 and Ca or Sr-substituted Y-doped BaZrO3 , 2018, Journal of the American Ceramic Society.

[29]  Ashok Kumar Baral,et al.  Sintering aid (ZnO) effect on proton transport in BaCe0.35 Zr0.5 Y0.15 O3-δ and electrode phenomena studied by distribution function of relaxation times , 2018, Journal of the American Ceramic Society.

[30]  R. Raj,et al.  Phase-pure BiFeO3 produced by reaction flash-sintering of Bi2O3 and Fe2O3 , 2018 .

[31]  J. Zhang,et al.  Densification of 8 mol% yttria-stabilized zirconia at low temperature by flash sintering technique for solid oxide fuel cells , 2017 .

[32]  Xiaomei Liu,et al.  Effect of MgO addition and grain size on the electrical properties of Ce0.9Gd0.1O1.95 electrolyte for IT-SOFCs , 2017 .

[33]  O. Vasylkiv,et al.  Hot-spots generation, exaggerated grain growth and mechanical performance of silicon carbide bulks consolidated by flash spark plasma sintering , 2017 .

[34]  C. Dancer Flash sintering of ceramic materials , 2016 .

[35]  R. Raj,et al.  Beyond flash sintering in 3 mol % yttria stabilized zirconia , 2016 .

[36]  Adam J. Stevenson,et al.  Estimating Joule heating and ionic conductivity during flash sintering of 8YSZ , 2016 .

[37]  Jingli Luo,et al.  Promoting Influence of Doping Indium into BaCe0.5Zr0.3Y0.2O3‐δ as Solid Proton Conductor , 2015 .

[38]  R. Raj,et al.  Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity , 2014 .

[39]  Zhenhua Wang,et al.  An improved direct current sintering technique for proton conductor – BaZr0.1Ce0.7Y0.1Yb0.1O3: The effect of direct current on sintering process , 2014 .

[40]  Wenping Sun,et al.  Synthesis and characterization of BaZr0.3Ce0.5Y0.2−xYbxO3−δ proton conductor for solid oxide fuel cells , 2014 .

[41]  S. Bonilla,et al.  Preliminary investigation of flash sintering of SiC , 2013 .

[42]  M. Steil,et al.  From conventional ac flash-sintering of YSZ to hyper-flash and double flash , 2013 .

[43]  H. Yoon,et al.  Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells , 2013 .

[44]  R. Raj Joule heating during flash-sintering , 2012 .

[45]  Zhenhua Wang,et al.  A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current , 2012 .

[46]  Meilin Liu,et al.  Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ by addition of nickel oxide , 2011 .

[47]  M. Cologna,et al.  Flash‐Sintering of Cubic Yttria‐Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing , 2011 .

[48]  Y. Sakka,et al.  Modeling of the temperature distribution of flash sintered zirconia , 2011 .

[49]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[50]  S. Haile,et al.  High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate , 2009 .

[51]  S. Licoccia,et al.  Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) , 2008 .

[52]  S. Haile,et al.  Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites , 2001 .

[53]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .