Enhanced Energy Transfer in the Co‐assembly of Donor‐Receptor Polymer Nanoparticles: An Artificial Light Capture System to Trigger Effective Photodynamic Antibacterial Processes

[1]  C. Hou,et al.  Iron‐Porphyrin‐Based Covalent Assembly with Peroxidase‐Like Activity and High Efficiency for Cr(VI) Colorimetric Detection , 2023, Macromolecular Chemistry and Physics.

[2]  K. K. Datta,et al.  Rational design of fluorinated graphene-porphyrin nanoarchitectonics: integrating hydrophobicity to macromolecular heterocyclic systems , 2022, Journal of Nanoparticle Research.

[3]  W. R. Algar,et al.  Developing FRET Networks for Sensing. , 2022, Annual review of analytical chemistry.

[4]  E. J. Cornel,et al.  Bone-Targeting Polymer Vesicles for Effective Therapy of Osteoporosis. , 2021, Nano letters.

[5]  Xinyue Zhang,et al.  Giant Polymer Vesicles with a Latticelike Membrane. , 2021, ACS macro letters.

[6]  J. Cruz,et al.  Photosynthesis: a multiscopic view , 2021, Journal of Plant Research.

[7]  J. Boyle,et al.  A Coumarin–Porphyrin FRET Break-Apart Probe for Heme Oxygenase-1 , 2021, Journal of the American Chemical Society.

[8]  M. Rajasekar Recent development in fluorescein derivatives , 2021 .

[9]  Hai‐Bo Yang,et al.  Supramolecular Artificial Light‐Harvesting Systems with Aggregation‐Induced Emission , 2020, Advanced Optical Materials.

[10]  D. Nocera,et al.  Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis. , 2019, Accounts of chemical research.

[11]  S. Trépout,et al.  CO2 -Activated Reversible Transition between Polymersomes and Micelles with AIE Fluorescence. , 2019, Angewandte Chemie.

[12]  P. Trouillas,et al.  Synthesis and Studies of New Fluorescein-Porphyrin Dyads: A Theoretical and Experimental Approach , 2018, ChemistrySelect.

[13]  Kimoon Kim,et al.  Porphyrin Boxes. , 2018, Accounts of chemical research.

[14]  Jens Michaelis,et al.  Complete Kinetic Theory of FRET. , 2018, The journal of physical chemistry. B.

[15]  Beibei Xu,et al.  D–A−π–A System: Light Harvesting, Charge Transfer, and Molecular Designing , 2017 .

[16]  Q. Lin,et al.  Synthesis and biomedical application of polymer vesicles composite hydrogels , 2017 .

[17]  Yongfeng Zhou,et al.  Hierarchical Self‐Assembly of a Dandelion‐Like Supramolecular Polymer into Nanotubes for use as Highly Efficient Aqueous Light‐Harvesting Systems , 2016 .

[18]  F. Naderi,et al.  Solvatochromism of fluorescein in aqueous aprotic solvents , 2016 .

[19]  C. Tung,et al.  Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. , 2016, Angewandte Chemie.

[20]  Q. Luo,et al.  Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System. , 2016, ACS nano.

[21]  I. Gryczynski,et al.  Demonstration of FRET in solutions , 2016 .

[22]  B. Dietzek,et al.  Light-harvesting of polymerizable 4-hydroxy-1,3-thiazole monomers by energy transfer toward photoactive Os(II) metal complexes in linear polymers , 2014 .

[23]  K. Schanze,et al.  Poly(fluorene-co-thiophene)-based ionic transition-metal complex polymers for solar energy harvesting and storage applications , 2014 .

[24]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[25]  J. Lovell,et al.  Porphyrin FRET acceptors for apoptosis induction and monitoring. , 2011, Journal of the American Chemical Society.

[26]  Ronghua Yang,et al.  Fluorescent detection of singlet oxygen: Amplifying signal transduction and improving sensitivity based on intramolecular FRET of anthryl appended porphyrins , 2011 .

[27]  K. Uvdal,et al.  Nanoscale light-harvesting metal-organic frameworks. , 2011, Angewandte Chemie.

[28]  Dennis E. Discher,et al.  Polymer Vesicles , 2022 .

[29]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.