Complexity Issues for Preorders on Finite Labeled Forests
暂无分享,去创建一个
[1] Sven Kosub. NP-Partitions over Posets with an Application to Reducing the Set of Solutions of NP Problems , 2004, Theory of Computing Systems.
[2] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[3] Erkko Lehtonen. Labeled posets are universal , 2008, Eur. J. Comb..
[4] Erkko Lehtonen,et al. On the Homomorphism Order of Labeled Posets , 2009, Order.
[5] Klaus W. Wagner,et al. The boolean hierarchy of NP-partitions , 2008, Inf. Comput..
[6] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests , 2006, CiE.
[7] A. Kechris. Classical descriptive set theory , 1987 .
[8] Victor L. Selivanov,et al. Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..
[9] Vasco Brattka,et al. Effective Choice and Boundedness Principles in Computable Analysis , 2009, The Bulletin of Symbolic Logic.
[10] K. Weihrauch. The TTE-Interpretation of Three Hierarchies of Omniscience Principles , 1992 .
[11] Victor L. Selivanov,et al. A Gandy Theorem for Abstract Structures and Applications to First-Order Definability , 2009, CiE.
[12] Peter Hertling,et al. Unstetigkeitsgrade von Funktionen in der effektiven Analysis , 1996 .
[13] Victor L. Selivanov,et al. Undecidability in Weihrauch Degrees , 2010, CiE.
[14] José L. Balcázar,et al. Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.
[15] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[16] K. Weihrauch. The Degrees of Discontinuity of some Translators Between Representations of the Real Numbers , 1992 .
[17] José L. Balcázar,et al. Structural complexity 2 , 1990 .
[18] V. Selivanov. Boolean Hierarchies of Partitions over a Reducible Base , 2004 .
[19] Michael David Hirsch. Applications of topology to lower bound estimates in computer science , 1991 .
[20] José L. Balcázar,et al. Structural complexity 1 , 1988 .
[21] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labelled Forests , 2007, J. Log. Comput..
[22] Vasco Brattka,et al. Weihrauch degrees, omniscience principles and weak computability , 2009, J. Symb. Log..
[23] José L. Balcázar,et al. Some results about Logspace complexity measures , 1984, Bull. EATCS.